Bimalendu Adhikari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6250968/publications.pdf

Version: 2024-02-01

39 papers 2,762 citations

293460 24 h-index 340414 39 g-index

43 all docs

43 docs citations

times ranked

43

4428 citing authors

#	Article	IF	Citations
1	Oxalamide-Bridged Ferrocenes: Conformational and Gelation Properties and <i>In Vitro</i> Activity. Organometallics, 2022, 41, 920-936.	1.1	7
2	Self-assembly of N-, C- and N-/C-terminated Val-and Phe-amino acid side chains of naphthalene. Journal of Molecular Structure, 2022, 1263, 133116.	1.8	2
3	COVIDâ€19 into Chemical Science Perspective: Chemical Preventive Measures and Drug Development. ChemistrySelect, 2021, 6, 2010-2028.	0.7	6
4	Photoresponsive Circular Supramolecular Polymers: A Topological Trap and Photoinduced Ringâ€Opening Elongation. Angewandte Chemie - International Edition, 2019, 58, 3764-3768.	7.2	41
5	Supramolecular Polymers Capable of Controlling Their Topology. Accounts of Chemical Research, 2019, 52, 1325-1335.	7.6	141
6	Photoresponsive Circular Supramolecular Polymers: A Topological Trap and Photoinduced Ringâ€Opening Elongation. Angewandte Chemie, 2019, 131, 3804-3808.	1.6	27
7	Kinetic Control Over the Topology of Curved Supramolecular Polymers. , 2019, , 231-248.		O
8	Water-induced self-assembly of an amphiphilic perylene bisimide dyad into vesicles, fibers, coils, and rings. Materials Chemistry Frontiers, 2018, 2, 171-179.	3.2	34
9	Photoresponsive supramolecular copolymers from diarylethene–perylene bisimide hydrogen bonded complexes. Polymer, 2017, 128, 356-362.	1.8	10
10	Supramolecular Polymerization of Supermacrocycles: Effect of Molecular Conformations on Kinetics and Morphology. Chemistry - A European Journal, 2017, 23, 5270-5280.	1.7	21
11	Light-induced unfolding and refolding of supramolecular polymer nanofibres. Nature Communications, 2017, 8, 15254.	5.8	105
12	Helically Chiral Peptides That Contain Ferroceneâ€1,1′â€diamine Scaffolds as a Turn Inducer. Chemistry - A European Journal, 2017, 23, 10372-10395.	1.7	19
13	Hydrogen-bonded rosettes comprising π-conjugated systems as building blocks for functional one-dimensional assemblies. Chemical Communications, 2017, 53, 9663-9683.	2.2	80
14	Phototriggered Supramolecular Polymerization of Barbituric Acid Rosette. Chemistry Letters, 2017, 46, 111-114.	0.7	12
15	Supramolecular polymerization of hydrogen-bonded rosettes with anthracene chromophores: regioisomeric effect on nanostructures. Polymer Journal, 2017, 49, 189-195.	1.3	3
16	Amino Acid Chirality and Ferrocene Conformation Guided Selfâ€Assembly and Gelation of Ferrocene–Peptide Conjugates. Chemistry - A European Journal, 2015, 21, 11560-11572.	1.7	40
17	Electron transfer in peptides. Chemical Society Reviews, 2015, 44, 1015-1027.	18.7	110
18	Development of photocatalysts for selective and efficient organic transformations. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 209-222.	1.7	45

#	Article	IF	CITATIONS
19	Sensitive electrochemical detection of Salmonella with chitosan–gold nanoparticles composite film. Talanta, 2015, 140, 122-127.	2.9	77
20	Synthesis, Spectroscopic Characterization and pH Dependent Electrochemical Fate of Two Non-lonic Surfactants. Journal of the Electrochemical Society, 2014, 161, H885-H890.	1.3	12
21	Biological activity, pH dependent redox behavior and UV–Vis spectroscopic studies of naphthalene derivatives. Journal of Photochemistry and Photobiology B: Biology, 2014, 140, 173-181.	1.7	5
22	Redox-triggered changes in the self-assembly of a ferrocene–peptide conjugate. Chemical Communications, 2014, 50, 5551-5553.	2.2	67
23	pH-dependent redox mechanism and evaluation of kinetic and thermodynamic parameters of a novel anthraquinone. RSC Advances, 2014, 4, 31657-31665.	1.7	16
24	Self-assembly of guanosine and deoxy-guanosine into hydrogels: monovalent cation guided modulation of gelation, morphology and self-healing properties. Journal of Materials Chemistry B, 2014, 2, 4802-4810.	2.9	74
25	Synthesis, spectroscopic characterization, pH dependent redox mechanism and DNA binding behavior of chlorohydroxyaniline derivatives. RSC Advances, 2014, 4, 22299-22307.	1.7	5
26	Bis-amino Acid Derivatives of $1,1\hat{a}\in^2$ -Ferrocenedicarboxylic Acid: Structural, Electrochemical, and Metal lon Binding Studies. Organometallics, 2014, 33, 4873-4887.	1,1	20
27	Detailed Electrochemistry of the Environmental Toxin Ethylene Diamine. Journal of the Electrochemical Society, 2014, 161, H370-H374.	1.3	8
28	Catalytic properties of graphene–metal nanoparticle hybrid prepared using an aromatic amino acid as the reducing agent. Materials Chemistry and Physics, 2013, 139, 450-458.	2.0	14
29	A Gelâ€Based Trihybrid System Containing Nanofibers, Nanosheets, and Nanoparticles: Modulation of the Rheological Property and Catalysis. Angewandte Chemie - International Edition, 2013, 52, 5041-5045.	7.2	129
30	Ferrocene–Tryptophan Conjugate: An Example of a Redox-Controlled Reversible Supramolecular Nanofiber Network. Organometallics, 2013, 32, 5899-5905.	1.1	35
31	Formation of Hybrid Hydrogels Consisting of Tripeptide and Different Silver Nanoparticle-Capped Ligands: Modulation of the Mechanical Strength of Gel Phase Materials. Journal of Physical Chemistry B, 2012, 116, 12235-12244.	1.2	50
32	Graphene Oxide-Based Supramolecular Hydrogels for Making Nanohybrid Systems with Au Nanoparticles. Langmuir, 2012, 28, 1460-1469.	1.6	80
33	Graphene Oxide-Based Hydrogels to Make Metal Nanoparticle-Containing Reduced Graphene Oxide-Based Functional Hybrid Hydrogels. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5472-5482.	4.0	171
34	Multicomponent hydrogels from enantiomeric amino acid derivatives: helical nanofibers, handedness and self-sorting. Soft Matter, 2011, 7, 8913.	1.2	133
35	Short peptide based hydrogels: incorporation of graphene into the hydrogel. Soft Matter, 2011, 7, 9259.	1.2	151
36	Pyreneâ€Containing Peptideâ€Based Fluorescent Organogels: Inclusion of Graphene into the Organogel. Chemistry - A European Journal, 2011, 17, 11488-11496.	1.7	138

#	Article	IF	CITATIONS
37	Shortâ€Peptideâ€Based Hydrogel: A Template for the In Situ Synthesis of Fluorescent Silver Nanoclusters by Using Sunlight. Chemistry - A European Journal, 2010, 16, 13698-13705.	1.7	171
38	Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and Hg ^{II} Sensing. Chemistry of Materials, 2010, 22, 4364-4371.	3.2	352
39	Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter, 2009, 5, 3452.	1.2	240