Lei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6250714/publications.pdf

Version: 2024-02-01

	840776		888059	
17	700	11	17	
papers	citations	h-index	g-index	
18	18	18	851	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	ECAP is a key negative regulator mediating different pathways to modulate salt stressâ€induced anthocyanin biosynthesis in <i>Arabidopsis</i> . New Phytologist, 2022, 233, 2216-2231.	7.3	12
2	Arabidopsis SYP121 acts as an ROP2 effector in the regulation of root hair tip growth. Molecular Plant, 2022, 15, 1008-1023.	8.3	13
3	The transcription factor ZmMYB69 represses lignin biosynthesis by activating <i>ZmMYB31/42</i> expression in maize. Plant Physiology, 2022, 189, 1916-1919.	4.8	11
4	Arabidopsis QWRF1 and QWRF2 Redundantly Modulate Cortical Microtubule Arrangement in Floral Organ Growth and Fertility. Frontiers in Cell and Developmental Biology, 2021, 9, 634218.	3.7	4
5	HOMEOBOX PROTEIN 24 mediates the conversion of indoleâ€3â€butyric acid to indoleâ€3â€acetic acid to promote root hair elongation. New Phytologist, 2021, 232, 2057-2070.	7.3	8
6	Arabidopsis ECAP Is a New Adaptor Protein that Connects JAZ Repressors with the TPR2 Co-repressor to Suppress Jasmonate-Responsive Anthocyanin Accumulation. Molecular Plant, 2020, 13, 246-265.	8.3	48
7	Maize <i>ZmRPH1</i> encodes a microtubuleâ€associated protein that controls plant and ear height. Plant Biotechnology Journal, 2020, 18, 1345-1347.	8.3	17
8	<i>Basicâ€leucine zipper 17</i> and <i>Hmgâ€CoA reductase degradation 3A</i> are involved in salt acclimation memory in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2019, 61, 1062-1084.	8.5	13
9	The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant Journal, 2018, 95, 474-486.	5.7	53
10	Rabâ€H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2018, 60, 1051-1069.	8.5	38
11	The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth. Plant Physiology, 2017, 174, 202-222.	4.8	41
12	Rice <i>TUTOU1</i> Encodes a Suppressor of cAMP Receptor-Like Protein That Is Important for Actin Organization and Panicle Development. Plant Physiology, 2015, 169, 1179-1191.	4.8	59
13	PCaP2 regulates nuclear positioning in growing Arabidopsis thaliana root hairs by modulating filamentous actin organization. Plant Cell Reports, 2015, 34, 1317-1330.	5.6	25
14	MAP18 Regulates the Direction of Pollen Tube Growth in $\langle i \rangle$ Arabidopsis $\langle i \rangle$ by Modulating F-Actin Organization Â. Plant Cell, 2013, 25, 851-867.	6.6	100
15	Analysis of In Vivo ROP GTPase Activity at the Subcellular Level by Fluorescence Resonance Energy Transfer Microscopy. Methods in Molecular Biology, 2011, 876, 145-152.	0.9	1
16	MDP25, A Novel Calcium Regulatory Protein, Mediates Hypocotyl Cell Elongation by Destabilizing Cortical Microtubules in <i>Arabidopsis</i> AnabidopsisOrtical Microtubules in <i>Ortical Microtubules in<i>Ortical Microtubules in</i>Ortical Microtubules in</i>Ortical Microtubules in<o>Ortical Microtubules in</o>Ortical Microtubules in<o>Ortical Microtubule</o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></o></i></i></i></i></i></i></i></i></i></i></i></i></i>	6.6	106
17	Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 Functions in Directional Cell Growth by Destabilizing Cortical Microtubules. Plant Cell, 2007, 19, 877-889.	6.6	151