Juntao He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6250627/publications.pdf Version: 2024-02-01

Ιμνιτλο Ηε

#	Article	lF	CITATIONS
1	Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT. Matter and Radiation at Extremes, 2016, 1, 163-178.	3.9	65
2	Asymmetric-mode competition in a relativistic backward wave oscillator with a coaxial slow-wave structure. Applied Physics Letters, 2010, 97, .	3.3	49
3	Progress in narrowband high-power microwave sources. Physics of Plasmas, 2020, 27, .	1.9	46
4	A low-impedance transit-time oscillator without foils. Physics of Plasmas, 2009, 16, .	1.9	45
5	An oversized X-band transit radiation oscillator. Applied Physics Letters, 2012, 101, .	3.3	34
6	Suppression of the asymmetric competition mode in the relativistic Ku-band coaxial transit-time oscillator. Physics of Plasmas, 2014, 21, 103108.	1.9	23
7	A novel Ka-band coaxial transit-time oscillator with a four-gap buncher. Physics of Plasmas, 2015, 22, 053107.	1.9	23
8	Design of a dual-frequency high-power microwave generator. Laser and Particle Beams, 2011, 29, 479-485.	1.0	20
9	A novel L-band slow wave structure for compact and high-efficiency relativistic Cerenkov oscillator. Physics of Plasmas, 2018, 25, .	1.9	20
10	A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field. Physics of Plasmas, 2014, 21, 023114.	1.9	19
11	Focusing electrode and coaxial reflector used for reducing the guiding magnetic field of the Ku-band foilless transit-time oscillator. Review of Scientific Instruments, 2014, 85, 084702.	1.3	18
12	Improved foilless Ku-band transit-time oscillator for generating gigawatt level microwave with low guiding magnetic field. Physics of Plasmas, 2014, 21, .	1.9	17
13	Experimental research on Ka-band coaxial transit-time oscillator. Physics of Plasmas, 2018, 25, .	1.9	17
14	High power microwave generation from the low-impedance transit-time oscillator without foils. Physics of Plasmas, 2012, 19, .	1.9	15
15	Effects of Intense Relativistic Electron Beam on the Microwave Generation in a Foilless Low-Impedance Transit-Time Oscillator. IEEE Transactions on Plasma Science, 2012, 40, 1622-1631.	1.3	13
16	Gigawatt-class microwave generation from a novel Ku-band coaxial transit-time oscillator with low guiding magnetic field. Physics of Plasmas, 2016, 23, 103103.	1.9	13
17	A novel L-band metamaterial relativistic Cherenkov oscillator with high conversion efficiency. Physics of Plasmas, 2019, 26, .	1.9	13
18	Analysis and Suppression of the Higher Order Competition Modes in Ku-Band Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2016, 44, 755-760.	1.3	10

JUNTAO HE

#	Article	IF	CITATIONS
19	A low-magnetic field high-efficiency high-power microwave source with novel diode structure. AIP Advances, 2020, 10, .	1.3	10
20	A relativistic backward-wave oscillator with frequency-selectable across X- and Ku-bands. Physics of Plasmas, 2017, 24, 033120.	1.9	9
21	Design and experimental demonstration of a circularly polarized mode converter for high-power microwave applications. Review of Scientific Instruments, 2018, 89, 084701.	1.3	9
22	A novel Ku-band relativistic transit-time oscillator with three-cavity extractor and distance-tunable reflector. Physics of Plasmas, 2017, 24, .	1.9	8
23	An Improved Ku-band MILO With Tapered Choke Cavity and Enlarged First Interaction Cavity. IEEE Transactions on Electron Devices, 2017, 64, 286-292.	3.0	8
24	A novel dual-band nested transit time oscillator. AIP Advances, 2021, 11, .	1.3	6
25	Experimental verification of a low-impedance transit-time oscillator without foils. Laser and Particle Beams, 2012, 30, 613-619.	1.0	5
26	Design of a slot-coupled radial line helical array antenna for high power microwave applications. AIP Advances, 2017, 7, .	1.3	5
27	Experimental research on Ku-band magnetically insulated transmission line oscillator. Physics of Plasmas, 2015, 22, 102112.	1.9	5
28	An Improved <inline-formula> <tex-math notation="LaTeX">\$K_{u}\$ </tex-math></inline-formula> -Band Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2015, 43, 3541-3545.	1.3	4
29	A Cerenkov microwave generator with cross-band frequency hopping based on magnetic field tuning. Physics of Plasmas, 2020, 27, .	1.9	4
30	Design and preliminary experiment of a disk-beam relativistic klystron amplifier for Ku-band long-pulse high power microwave radiation. Physics of Plasmas, 2020, 27, .	1.9	4
31	Theoretical analysis and experimental verification of electron beam transmission with low guiding magnetic field in V-band coaxial transit-time oscillator. Physics of Plasmas, 2021, 28, .	1.9	4
32	Research on a Low-Magnetic Field High-Efficiency Transit-Time Oscillator With Two Bunchers. IEEE Transactions on Plasma Science, 2022, 50, 656-661.	1.3	4
33	Preliminary research of a V-band coaxial relativistic transit-time oscillator with traveling wave output structure. Physics of Plasmas, 2021, 28, .	1.9	4
34	An L-band transit-time oscillator with mechanical frequency tunability. Physics of Plasmas, 2017, 24, .	1.9	3
35	Field distribution and dispersion characteristics of a coaxial oversized slow wave structure with deep corrugation operating on high-order mode. AIP Advances, 2020, 10, .	1.3	3
36	A novel metamaterial slow wave structure with larger space-charge-limited current. Physics of Plasmas, 2021, 28, .	1.9	3

Juntao He

#	Article	IF	CITATIONS
37	A novel L-band coaxial transit-time oscillator with tunable frequency. AIP Advances, 2017, 7, .	1.3	2
38	Plasma bombardments in the diode in Ka-band coaxial transit-time oscillator. AIP Advances, 2018, 8, .	1.3	2
39	An improved Ku-band TTO with compact solenoid and better plasma-suppressing collector. AIP Advances, 2019, 9, 025126.	1.3	2
40	Efficiency Enhancement of a High Power Radial-Line Relativistic Klystron Amplifier Driven by Disk Intense Electron Beam. IEEE Transactions on Electron Devices, 2021, , 1-7.	3.0	2
41	A high-efficiency cross-band Cerenkov microwave generator with a resonant reflector. AIP Advances, 2021, 11, .	1.3	2
42	A Ka-band coaxial transit time oscillator with a focusing cathode. AIP Advances, 2021, 11, .	1.3	2
43	A coaxial ku-band transit radiation oscillator without an external guiding magnetic field. , 2013, , .		1
44	Design and experimental demonstration of a TEM-TE10 phase shifter for high-power microwave applications. Review of Scientific Instruments, 2019, 90, 014709.	1.3	1
45	A novel Ka-band coaxial transit time oscillator with internal extraction. Review of Scientific Instruments, 2021, 92, 094704.	1.3	1
46	A novel all-metal metamaterial for constructing relativistic slow wave structure. AIP Advances, 2022, 12, 035345.	1.3	1
47	Experimental research on Ku-Band MILO. , 2015, , .		0
48	A two-buncher high-efficiency transit-time oscillator with a low guiding magnetic field. AIP Advances, 2021, 11, 065127.	1.3	0
49	Analysis of A Non-anisotropic Metamaterial Slow Wave Structure for HPM Generation. , 2021, ,		0
50	Research on coaxial transit time oscillator with low magnetic field and high efficiency. AIP Advances, 2022, 12, 075017.	1.3	0