Misaki Katayama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6250109/publications.pdf

Version: 2024-02-01

52 830 16 28 papers citations h-index g-index

52 52 52 1287 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution. Scientific Reports, 2016, 6, 26382.	3.3	123
2	X-ray absorption fine structure imaging of inhomogeneous electrode reaction in LiFePO4 lithium-ion battery cathode. Journal of Power Sources, 2014, 269, 994-999.	7.8	55
3	Combined adsorption and oxidation mechanisms of hydrogen sulfide on granulated coal ash. Journal of Colloid and Interface Science, 2012, 377, 284-290.	9.4	51
4	A Comparison on Ce ³⁺ Luminescence in Borate Glass and YAG Ceramic: Understanding the Role of Host's Characteristics. Journal of Physical Chemistry C, 2016, 120, 17683-17691.	3.1	51
5	Mechanisms of Hydrogen Sulfide Removal with Steel Making Slag. Environmental Science & Science & Technology, 2012, 46, 10169-10174.	10.0	49
6	Improvement of Cycle Capability of FeS ₂ Positive Electrode by Forming Composites with Li ₂ S for Ambient Temperature Lithium Batteries. Journal of the Electrochemical Society, 2011, 159, A75-A84.	2.9	46
7	Removal of hydrogen sulfide using carbonated steel slag. Chemical Engineering Journal, 2013, 228, 843-849.	12.7	44
8	Lanthanide Complexes of Macrocyclic Polyoxovanadates by VO ₄ Units: Synthesis, Characterization, and Structure Elucidation by X-ray Crystallography and EXAFS Spectroscopy. Inorganic Chemistry, 2012, 51, 784-793.	4.0	36
9	Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature. Journal of Power Sources, 2018, 377, 80-86.	7.8	36
10	Thermoelectric Efficiency of Reduced <scp><scp>SrTiO</scp></scp> ₃ Ceramics Modified with <scp><scp>La</scp></scp> and <scp><scp>Nb</scp></scp> . Journal of the American Ceramic Society, 2013, 96, 2852-2856.	3.8	33
11	The Number of Water-Water Hydrogen Bonds inÂWater-Tetrahydrofuran and Water-Acetone Binary Mixtures Determined by Means of X-Ray Scattering. Journal of Solution Chemistry, 2008, 37, 841-856.	1.2	27
12	Incorporation of Bulk Proton Carriers in Cubic Perovskite Manganite Driven by Interplays of Oxygen and Manganese Redox. Chemistry of Materials, 2019, 31, 8383-8393.	6.7	26
13	Evidence of valence state change of Ce^3+ and Cr^3+ during UV charging process in Y_3Al_2Ga_3O_12 persistent phosphors. Optical Materials Express, 2017, 7, 2471.	3.0	24
14	Development of a two-dimensional imaging system of X-ray absorption fine structure. Journal of Synchrotron Radiation, 2012, 19, 717-721.	2.4	22
15	Regeneration of manganese oxide as adsorption sites for hydrogen sulfide on granulated coal ash. Chemical Engineering Journal, 2014, 254, 531-537.	12.7	20
16	Effect of adding Au nanoparticles to TiO ₂ films on crystallization, phase transformation, and photocatalysis. Journal of Materials Research, 2018, 33, 467-481.	2.6	19
17	Photoinduced anisotropic distortion as the electron trapping site of tungsten trioxide by ultrafast W L ₁ -edge X-ray absorption spectroscopy with full potential multiple scattering calculations. Physical Chemistry Chemical Physics, 2020, 22, 2615-2621.	2.8	15
18	Vanadium diphosphide as a negative electrode material for sodium secondary batteries. Journal of Power Sources, 2021, 483, 229182.	7.8	14

#	Article	IF	Citations
19	Liquid structure of benzene and its derivatives as studied by means of X-ray scattering. Physics and Chemistry of Liquids, 2010, 48, 797-809.	1.2	12
20	Reevaluation of Donor Number Using Titration Calorimetry. Analytical Sciences, 2012, 28, 103-106.	1.6	11
21	Fabrication of Co/P25 coated with thin nitrogen-doped carbon shells (Co/P25/NC) as an efficient electrocatalyst for oxygen reduction reaction (ORR). Electrochimica Acta, 2019, 296, 867-873.	5.2	10
22	The Liquid Structure of Various Nitriles and N,N-Dimethylformamide Studied by the X-Ray Diffraction Method Using a CCD Detector. Zeitschrift Fur Physikalische Chemie, 2004, 218, 659-677.	2.8	9
23	Induced Fitting and Polarization of a Bromine Molecule in an Electrophilic Inorganic Molecular Cavity and Its Bromination Reactivity. Angewandte Chemie - International Edition, 2020, 59, 14399-14403.	13.8	9
24	A highly-flexible cyclic-decavanadate ligand for interconversion of dinuclear- and trinuclear-cobalt(<scp>ii</scp>) and manganese(<scp>ii</scp>) cores. RSC Advances, 2017, 7, 37666-37674.	3.6	8
25	Improvement of Cycle Capability of Fe-Substituted Li ₂ S-Based Positive Electrode Materials by Doping with Lithium Iodide. Journal of the Electrochemical Society, 2019, 166, A5231-A5236.	2.9	8
26	Kinetic Study on Solid-Phase Reduction of Silica-Supported Nickel Oxide Species. Bulletin of the Chemical Society of Japan, 2015, 88, 1629-1635.	3.2	7
27	Particle size effect of redox reactions for Co species supported on silica. Journal of Solid State Chemistry, 2016, 241, 212-218.	2.9	7
28	Reduction Kinetics of Nickel Species Supported on Silica. Journal of Physics: Conference Series, 2013, 430, 012051.	0.4	6
29	Analysis of Liquid Structure without Construction of Any Structure Models by the X-Ray Scattering Method. Analytical Sciences, 2007, 23, 929-936.	1.6	5
30	In situ two-dimensional micro-imaging XAFS with CCD detector. Journal of Physics: Conference Series, 2013, 430, 012021.	0.4	5
31	In situ time-resolved dispersive X-ray absorption fine structure analysis of BaTiO ₃ –LiCoO ₂ composites for lithium ion batteries. Journal of the Ceramic Society of Japan, 2016, 124, 659-663.	1.1	5
32	Improvement of Cycle Capability of VS ₄ by Addition of Phosphorus Element. Electrochemistry, 2021, 89, 273-278.	1.4	5
33	Kinetic Study of Reduction Reaction for Supported PdO Species by Means of Dispersive XAFS Method. Journal of Physics: Conference Series, 2013, 430, 012053.	0.4	4
34	Oxidation property of SiO ₂ -supported small nickel particle prepared by the sol-gel method. Journal of Physics: Conference Series, 2016, 712, 012075.	0.4	4
35	Development of dispersive XAFS system for analysis of time-resolved spatial distribution of electrode reaction. Journal of Synchrotron Radiation, 2015, 22, 1227-1232.	2.4	3
36	Dynamic chemical state conversion of nickel species supported on silica under CO–NO reaction conditions. Catalysis Today, 2018, 303, 33-39.	4.4	3

3

#	Article	IF	CITATIONS
37	Stability of Copper Nitride Nanoparticles under High Humidity and in Solutions with Different Acidity. Chemistry Letters, 2015, 44, 755-757.	1.3	2
38	<i>In-situ</i> XAFS study for calcination process of Cr catalyst supported on f³-Al ₂ O ₃ and SiO ₂ . Journal of Physics: Conference Series, 2016, 712, 012073.	0.4	2
39	Time-resolved study on dynamic chemical state conversion of SiO ₂ -supported Co species by means of dispersive XAFS technique. Journal of Physics: Conference Series, 2016, 712, 012061.	0.4	2
40	Analysis of Reaction Mechanism for Supported Metal Catalysts by Means of Time-Resolved XAFS Technique. Journal of the Vacuum Society of Japan, 2016, 59, 293-300.	0.3	2
41	In situ X-ray absorption fine structure analysis of redox reactions of nickel species with variable particle sizes supported on silica. Journal of Solid State Chemistry, 2018, 258, 264-270.	2.9	2
42	Spin states investigation of delafossite oxides by means of X-ray absorption and photoemission spectroscopy. Journal of Solid State Chemistry, 2019, 275, 83-87.	2.9	2
43	Development of Simultaneous Measurement System for X-ray Absorption Spectra at Two Absorption Edges. Analytical Sciences, 2020, 36, 47-53.	1.6	2
44	Single atomic Co coordinated with N in microporous carbon for oxygen reduction reaction obtained from Co/2-methylimidazole anchored to Y zeolite as a template. Materials Today Chemistry, 2021, 20, 100410.	3.5	2
45	Inhomogeneous distribution of chemical species in lithium nickel oxide cathode of lithium ion battery. Journal of Physics: Conference Series, 2016, 712, 012143.	0.4	1
46	Discharge condition dependence of in-plane inhomogeneous cathode reaction analyzed by X-ray absorption near edge structure imaging. Journal of Power Sources, 2021, 506, 230256.	7.8	1
47	Novel structural variation of silver(I)–pyridine complexes in nitromethane as studied by X-ray absorption spectroscopy. Inorganica Chimica Acta, 2011, 378, 66-71.	2.4	0
48	Charge-Discharge Property of Non-Stoichiometric Lithium Iron Silicate. ECS Transactions, 2017, 80, 111-116.	0.5	0
49	X-Ray Absorption Fine Structure Imaging of Lithium Ion Secondary Battery. Journal of the Vacuum Society of Japan, 2015, 58, 375-378.	0.3	0
50	Analysis of Irreversible Charge-Discharge Reaction in LiFePO4/Li4Ti5O12 Full-Cell Using Two-Phase Reaction Active Material. ECS Meeting Abstracts, 2020, MA2020-02, 3502-3502.	0.0	0
51	Analysis of Rate and Temperature Dependence of Inhomogeneous Cathode Reaction By Means of in-Situ XAFS Imaging. ECS Meeting Abstracts, 2020, MA2020-02, 3149-3149.	0.0	0
52	Imaging XAFS Study on Reaction Distribution of Composite Electrode Used As Commercial Lithium-Ion Battery. ECS Meeting Abstracts, 2020, MA2020-02, 3503-3503.	0.0	0