Chao Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6249773/chao-wang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24,706 158 76 157 h-index g-index citations papers 28,361 13.7 171 7.31 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
158	Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth <i>Nature Communications</i> , 2022 , 13, 110	17.4	7
157	Systemically administered silica nanoparticles result in diminished T cell response in lung. <i>Nano Today</i> , 2022 , 42, 101332	17.9	2
156	Gold nanorods modified by endogenous protein with light-irradiation enhance bone repair via multiple osteogenic signal pathways <i>Biomaterials</i> , 2022 , 284, 121482	15.6	2
155	Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. <i>Biomaterials</i> , 2021 , 280, 121272	15.6	16
154	Mesenchymal Stem Cell-Derived Extracellular Vesicles with High PD-L1 Expression for Autoimmune Diseases Treatment. <i>Advanced Materials</i> , 2021 , e2106265	24	9
153	3D Printing Scaffold Vaccine for Antitumor Immunity. <i>Advanced Materials</i> , 2021 , 33, e2106768	24	6
152	Localized delivery of immunotherapeutics: A rising trend in the field. <i>Journal of Controlled Release</i> , 2021 , 340, 149-167	11.7	4
151	Physiologically triggered injectable red blood cell-based gel for tumor photoablation and enhanced cancer immunotherapy. <i>Biomaterials</i> , 2021 , 271, 120724	15.6	9
150	Immunosuppressive Nanoparticles for Management of Immune-Related Adverse Events in Liver. <i>ACS Nano</i> , 2021 , 15, 9111-9125	16.7	10
149	Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. <i>Journal of Controlled Release</i> , 2021 , 329, 445-453	11.7	14
148	Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia. <i>Biomaterials</i> , 2021 , 269, 120621	15.6	25
147	Injectable ROS-scavenging hydrogel with MSCs promoted the regeneration of damaged skeletal muscle. <i>Journal of Tissue Engineering</i> , 2021 , 12, 20417314211031378	7.5	4
146	Targeted delivery of dexamethasone in acute pneumonia. <i>Biomaterials Science</i> , 2021 , 9, 5569-5576	7.4	1
145	Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy. <i>Nano Letters</i> , 2021 , 21, 1228-1237	11.5	16
144	Efficient Delivery of Chlorin e6 by Polyglycerol-Coated Iron Oxide Nanoparticles with Conjugated Doxorubicin for Enhanced Photodynamic Therapy of Melanoma. <i>Molecular Pharmaceutics</i> , 2021 , 18, 36	01 ^{5.5} 61	₅ 7
143	Reshaping the Inflammatory Environment in Rheumatoid Arthritis Joints by Targeting Delivery of Berberine with Platelet-Derived Extracellular Vesicles. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 21000	7f	3
142	Implantable blood clot loaded with BMP-2 for regulation of osteoimmunology and enhancement of bone repair. <i>Bioactive Materials</i> , 2021 , 6, 4014-4026	16.7	6

(2020-2020)

141	Near-Infrared Light-Responsive Nitric Oxide Delivery Platform for Enhanced Radioimmunotherapy. <i>Nano-Micro Letters</i> , 2020 , 12, 100	19.5	18
140	Engineered biomaterials for cancer immunotherapy. <i>MedComm</i> , 2020 , 1, 35-46	2.2	19
139	Cell membrane-coated nanoparticles: research advances. <i>Nanomedicine</i> , 2020 , 15, 625-641	5.6	32
138	Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. <i>Science Advances</i> , 2020 , 6, eaaz4204	14.3	70
137	NIR-II probe modified by poly(L-lysine) with efficient ovalbumin delivery for dendritic cell tracking. <i>Science China Chemistry</i> , 2020 , 63, 1272-1280	7.9	3
136	Specific "Unlocking" of a Nanozyme-Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9491-9497	16.4	55
135	Artificial Mini Dendritic Cells Boost T Cell-Based Immunotherapy for Ovarian Cancer. <i>Advanced Science</i> , 2020 , 7, 1903301	13.6	44
134	Specific Unlockinglof a Nanozyme-Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors. <i>Angewandte Chemie</i> , 2020 , 132, 9578-9584	3.6	12
133	The enhanced permeability and retention effect based nanomedicine at the site of injury. <i>Nano Research</i> , 2020 , 13, 564-569	10	28
132	Calming Cytokine Storm in Pneumonia by Targeted Delivery of TPCA-1 Using Platelet-Derived Extracellular Vesicles. <i>Matter</i> , 2020 , 3, 287-301	12.7	53
131	Built-In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. <i>Advanced Materials</i> , 2020 , 32, e1905740	24	80
130	Hydrogel-Based Controlled Drug Delivery for Cancer Treatment: A Review. <i>Molecular Pharmaceutics</i> , 2020 , 17, 373-391	5.6	49
129	In Situ Formed Fibrin Scaffold with Cyclophosphamide to Synergize with Immune Checkpoint Blockade for Inhibition of Cancer Recurrence after Surgery. <i>Advanced Functional Materials</i> , 2020 , 30, 1906922	15.6	33
128	Reactive Oxygen Species-Scavenging Scaffold with Rapamycin for Treatment of Intervertebral Disk Degeneration. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901186	10.1	11
127	An implantable blood clot-based immune niche for enhanced cancer vaccination. <i>Science Advances</i> , 2020 , 6,	14.3	33
126	Active Microneedle Administration of Plant Virus Nanoparticles for Cancer Vaccination Improves Immunotherapeutic Efficacy. <i>ACS Applied Nano Materials</i> , 2020 , 3, 8037-8051	5.6	15
125	ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds. <i>Biomaterials</i> , 2020 , 258, 120286	15.6	108
124	Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 50248-50259	9.5	12

123	A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. <i>Nature Nanotechnology</i> , 2020 , 15, 1043-1052	28.7	124
122	Upconversion Fluorescent Nanoprobe for Highly Sensitive In Vivo Cell Tracking. <i>Methods in Molecular Biology</i> , 2020 , 2126, 85-93	1.4	O
121	Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. <i>Science Advances</i> , 2019 , 5, eaaw6870	14.3	131
120	Biodegradable iron-coordinated hollow polydopamine nanospheres for dihydroartemisinin delivery and selectively enhanced therapy in tumor cells. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 6172-6180	7.3	16
119	In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. <i>Biomaterials</i> , 2019 , 224, 119490	15.6	36
118	Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. <i>Journal of Controlled Release</i> , 2019 , 296, 150-161	11.7	205
117	Development of Lactobacillus kimchicus DCY51-mediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2019 , 47, 30-44	6.1	20
116	Iron Nanoparticles for Low-Power Local Magnetic Hyperthermia in Combination with Immune Checkpoint Blockade for Systemic Antitumor Therapy. <i>Nano Letters</i> , 2019 , 19, 4287-4296	11.5	113
115	Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. <i>Journal of Controlled Release</i> , 2019 , 304, 233-241	11.7	34
114	Light-Triggered In Situ Gelation to Enable Robust Photodynamic-Immunotherapy by Repeated Stimulations. <i>Advanced Materials</i> , 2019 , 31, e1900927	24	157
113	Gram-scale fabrication of Bi@C nanoparticles through one-step hydrothermal method for dual-model imaging-guided NIR-II photothermal therapy. <i>Nanoscale</i> , 2019 , 11, 9906-9911	7.7	19
112	Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells. <i>Advanced Materials</i> , 2019 , 31, e1900192	24	178
111	Take Immune Cells Back on Track: Glycopolymer-Engineered Tumor Cells for Triggering Immune Response. <i>ACS Macro Letters</i> , 2019 , 8, 337-344	6.6	19
110	Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy. <i>Cancers</i> , 2019 , 11,	6.6	29
109	In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. <i>Nature Nanotechnology</i> , 2019 , 14, 89-97	28.7	424
108	In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	318
107	PD-1 Blockade Cellular Vesicles for Cancer Immunotherapy. <i>Advanced Materials</i> , 2018 , 30, e1707112	24	138
106	Core-Shell Microneedle Gel for Self-Regulated Insulin Delivery. <i>ACS Nano</i> , 2018 , 12, 2466-2473	16.7	132

105	Red Blood Cells as Smart Delivery Systems. <i>Bioconjugate Chemistry</i> , 2018 , 29, 852-860	6.3	96
104	Engineering PD-1-Presenting Platelets for Cancer Immunotherapy. <i>Nano Letters</i> , 2018 , 18, 5716-5725	11.5	113
103	Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. <i>Advanced Functional Materials</i> , 2018 , 28, 1802540	15.6	69
102	Cellular Bioparticulates with Therapeutics for Cancer Immunotherapy. <i>Bioconjugate Chemistry</i> , 2018 , 29, 702-708	6.3	12
101	Precise nanomedicine for intelligent therapy of cancer. <i>Science China Chemistry</i> , 2018 , 61, 1503-1552	7.9	256
100	Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of HO and Catalase for Enhanced Radio-Immunotherapy of Cancer. <i>Nano Letters</i> , 2018 , 18, 6360-6368	11.5	158
99	Mn-Fe layered double hydroxide nanosheets: a new photothermal nanocarrier for O-evolving phototherapy. <i>Chemical Communications</i> , 2018 , 54, 11729-11732	5.8	30
98	Conjugated Polymer Brush Based on Poly(l-lysine) with Efficient Ovalbumin Delivery for Dendritic Cell Vaccine <i>ACS Applied Bio Materials</i> , 2018 , 1, 1972-1982	4.1	5
97	Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. <i>Nature Biomedical Engineering</i> , 2018 , 2, 831-840	19	143
96	Protein-Engineered Biomaterials for Cancer Theranostics. <i>Advanced Healthcare Materials</i> , 2018 , 7, e180	091.3	21
95	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. <i>Advanced Materials</i> , 2018 , 30, e1801527	24	179
94	Delivery Strategies for Immune Checkpoint Blockade. <i>Advanced Healthcare Materials</i> , 2018 , 7, e180042	410.1	57
93	In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	278
92	Photosensitizer Decorated Red Blood Cells as an Ultrasensitive Light-Responsive Drug Delivery System. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	41
91	Red Blood Cells for Glucose-Responsive Insulin Delivery. <i>Advanced Materials</i> , 2017 , 29, 1606617	24	100
90	Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. <i>Advanced Materials</i> , 2017 , 29, 1606036	24	178
89	Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. <i>Theranostics</i> , 2017 , 7, 3504	-3:5:1:6	41
88	Erythrocyte-Membrane-Enveloped Perfluorocarbon as Nanoscale Artificial Red Blood Cells to	24	315

87	A melanin-mediated cancer immunotherapy patch. Science Immunology, 2017, 2,	28	209
86	Red Blood Cells for Drug Delivery. Small Methods, 2017 , 1, 1700270	12.8	45
85	Investigation and intervention of autophagy to guide cancer treatment with nanogels. <i>Nanoscale</i> , 2017 , 9, 150-163	7.7	27
84	Local delivery of checkpoints antibodies. <i>Human Vaccines and Immunotherapeutics</i> , 2017 , 13, 245-248	4.4	15
83	Thrombin-Responsive Transcutaneous Patch for Auto-Anticoagulant Regulation. <i>Advanced Materials</i> , 2017 , 29, 1604043	24	65
82	Inflammation-Triggered Cancer Immunotherapy by Programmed Delivery of CpG and Anti-PD1 Antibody. <i>Advanced Materials</i> , 2016 , 28, 8912-8920	24	213
81	Polydopamine Coated Selenide Molybdenum: A New Photothermal Nanocarrier for Highly Effective Chemo-Photothermal Synergistic Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 2011-201	7 ^{5.5}	68
80	Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. <i>Nature Communications</i> , 2016 , 7, 13193	17.4	963
79	Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016). <i>Advanced Materials</i> , 2016 , 28, 3226-3226	24	5
78	Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody. <i>Nano Letters</i> , 2016 , 16, 2334-40	11.5	446
77	Recent advances of cocktail chemotherapy by combination drug delivery systems. <i>Advanced Drug Delivery Reviews</i> , 2016 , 98, 19-34	18.5	384
76	Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy. <i>Advanced Materials</i> , 2016 , 28, 3313-20	24	355
75	Drug Delivery: Microneedles Integrated with Pancreatic Cells and Synthetic Glucose-Signal Amplifiers for Smart Insulin Delivery (Adv. Mater. 16/2016). <i>Advanced Materials</i> , 2016 , 28, 3223	24	3
74	Microneedles Integrated with Pancreatic Cells and Synthetic Glucose-Signal Amplifiers for Smart Insulin Delivery. <i>Advanced Materials</i> , 2016 , 28, 3115-3121	24	138
73	Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale, 2016, 8, 9178	3- 9 47	26
72	Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. <i>Biomaterials</i> , 2016 , 96, 1-10	15.6	39
71	Synergistic Transcutaneous Immunotherapy Enhances Antitumor Immune Responses through Delivery of Checkpoint Inhibitors. <i>ACS Nano</i> , 2016 , 10, 8956-63	16.7	215
70	ATM may be a protective factor in endometrial carcinogenesis with the progesterone pathway. <i>Tumor Biology</i> , 2015 , 36, 1529-37	2.9	5

(2014-2015)

69	Remotely Controlled Red Blood Cell Carriers for Cancer Targeting and Near-Infrared Light-Triggered Drug Release in Combined Photothermal Chemotherapy. <i>Advanced Functional Materials</i> , 2015 , 25, 2386-2394	15.6	133	
68	Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted Combination Therapy. <i>ACS Nano</i> , 2015 , 9, 5223-33	16.7	269	
67	Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. <i>Biomaterials</i> , 2015 , 54, 55-6	52 ^{15.6}	89	
66	Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27324-30	9.5	95	
65	Mesoporous Silica Coated Single-Walled Carbon Nanotubes as a Multifunctional Light-Responsive Platform for Cancer Combination Therapy. <i>Advanced Functional Materials</i> , 2015 , 25, 384-392	15.6	202	
64	A versatile 'click chemistry' route to size-restricted, robust, and functionalizable hydrophilic nanocrystals. <i>Small</i> , 2015 , 11, 1644-8	11	11	
63	An imagable and photothermal "Abraxane-like" nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. <i>Advanced Materials</i> , 2015 , 27, 903-10	24	340	
62	Nanomedicine: Anticancer Platelet-Mimicking Nanovehicles (Adv. Mater. 44/2015). <i>Advanced Materials</i> , 2015 , 27, 7014-7014	24	5	
61	Near-infrared dye bound human serum albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy preventing tumor metastasis. <i>Journal of Controlled Release</i> , 2015 , 213, e89	11.7	5	
60	cRGD-Functionalized AuNR-cored PEG-PCL nanoparticles for efficacious glioma chemotherapy. <i>Journal of Controlled Release</i> , 2015 , 213, e135	11.7	4	
59	Anticancer Platelet-Mimicking Nanovehicles. Advanced Materials, 2015, 27, 7043-50	24	368	
58	Photosensitizer-Conjugated Albumin-Polypyrrole Nanoparticles for Imaging-Guided In Vivo Photodynamic/Photothermal Therapy. <i>Small</i> , 2015 , 11, 3932-41	11	209	
57	Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12029-33	16.4	393	
56	Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. <i>ACS Nano</i> , 2015 , 9, 6401-11	16.7	160	
55	Transformable liquid-metal nanomedicine. <i>Nature Communications</i> , 2015 , 6, 10066	17.4	320	
54	Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy. <i>Biomaterials</i> , 2015 , 42, 161-71	15.6	23	
53	Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. <i>ACS Nano</i> , 2015 , 9, 950-60	16.7	406	
52	Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. <i>Advanced Materials</i> , 2014 , 26, 3433-40	24	919	

51	PEGylated WS(2) nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. <i>Advanced Materials</i> , 2014 , 26, 1886-93	24	899
50	Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy. <i>Advanced Functional Materials</i> , 2014 , 24, 1194-1201	15.6	226
49	Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. <i>Advanced Materials</i> , 2014 , 26, 4794-802	24	183
48	Conjugated polymers for photothermal therapy of cancer. <i>Polymer Chemistry</i> , 2014 , 5, 1573-1580	4.9	191
47	Imaging: PEGylated WS2 Nanosheets as a Multifunctional Theranostic Agent for in vivo Dual-Modal CT/Photoacoustic Imaging Guided Photothermal Therapy (Adv. Mater. 12/2014). <i>Advanced Materials</i> , 2014 , 26, 1794-1794	24	15
46	Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. <i>Nano Research</i> , 2014 , 7, 1327-1336	10	59
45	Photoacoustic Imaging Guided Near-Infrared Photothermal Therapy Using Highly Water-Dispersible Single-Walled Carbon Nanohorns as Theranostic Agents. <i>Advanced Functional Materials</i> , 2014 , 24, 6621-	-6628	111
44	In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4726-4732	7.3	35
43	Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. <i>ACS Nano</i> , 2014 , 8, 10621-30	16.7	230
42	Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. <i>Biomaterials</i> , 2014 , 35, 8206-14	15.6	176
41	Functional nanomaterials for phototherapies of cancer. <i>Chemical Reviews</i> , 2014 , 114, 10869-939	68.1	1771
40	Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. <i>Nanoscale</i> , 2014 , 6, 11219-25	7.7	277
39	Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. <i>Biomaterials</i> , 2014 , 35, 2915-23	15.6	265
38	cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. <i>Journal of Controlled Release</i> , 2014 , 195, 63-71	11.7	67
37	Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. <i>Biomaterials</i> , 2014 , 35, 3060-70	15.6	56
36	Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. <i>Advanced Materials</i> , 2014 , 26, 5646-52	24	383
35	J-aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915-nm light. <i>Small</i> , 2014 , 10, 4362-70	11	74
34	Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. <i>Advanced Materials</i> , 2014 , 26, 8154-	6 2 4	413

33	Suppression of colorectal cancer subcutaneous xenograft and experimental lung metastasis using nanoparticle-mediated drug delivery to tumor neovasculature. <i>Biomaterials</i> , 2014 , 35, 1215-26	15.6	24
32	Combined effects of 50 Hz magnetic field and magnetic nanoparticles on the proliferation and apoptosis of PC12 cells. <i>Biomedical and Environmental Sciences</i> , 2014 , 27, 97-105	1.1	8
31	Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. <i>ACS Nano</i> , 2013 , 7, 6782-95	16.7	404
30	Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. <i>Theranostics</i> , 2013 , 3, 317-30	12.1	307
29	Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer. <i>Biomaterials</i> , 2013 , 34, 6163-74	15.6	66
28	PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. <i>Biomaterials</i> , 2013 , 34, 9160-70	15.6	163
27	Stem Cell Labeling and Tracking with Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 1006-1017	3.1	26
26	Magnetic PEGylated Pt3Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study. <i>Nanoscale</i> , 2013 , 5, 12464-73	7.7	18
25	Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. <i>Nanoscale</i> , 2013 , 5, 23-37	7.7	303
24	Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light. <i>Advanced Functional Materials</i> , 2013 , 23, 3077-3086	15.6	294
23	Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. <i>Biomaterials</i> , 2013 , 34, 4786-93	15.6	282
22	PEGylated Micelle Nanoparticles Encapsulating a Non-Fluorescent Near-Infrared Organic Dye as a Safe and Highly-Effective Photothermal Agent for In Vivo Cancer Therapy. <i>Advanced Functional Materials</i> , 2013 , 23, 5893-5902	15.6	212
21	Gold nanorod-cored biodegradable micelles as a robust and remotely controllable doxorubicin release system for potent inhibition of drug-sensitive and -resistant cancer cells. <i>Biomacromolecules</i> , 2013 , 14, 2411-9	6.9	106
20	The use of nanoparticulate delivery systems in metronomic chemotherapy. <i>Biomaterials</i> , 2013 , 34, 3925	-3 <u>9</u> .37	16
19	Multifunctional Upconversion Nanoparticles for Dual-Modal Imaging-Guided Stem Cell Therapy under Remote Magnetic Control. <i>Advanced Functional Materials</i> , 2013 , 23, 272-280	15.6	125
18	Biomedical Applications: Imaging-Guided pH-Sensitive Photodynamic Therapy Using Charge Reversible Upconversion Nanoparticles under Near-Infrared Light (Adv. Funct. Mater. 24/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3018-3018	15.6	2
17	Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. <i>Biomaterials</i> , 2012 , 33, 4872-81	15.6	121
16	Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7414	1 ¹ 62 ⁴	391

15	Carrier-free, functionalized drug nanoparticles for targeted drug delivery. <i>Chemical Communications</i> , 2012 , 48, 8120-2	5.8	54
14	Protamine Functionalized Single-Walled Carbon Nanotubes for Stem Cell Labeling and In Vivo Raman/Magnetic Resonance/Photoacoustic Triple-Modal Imaging. <i>Advanced Functional Materials</i> , 2012 , 22, 2363-2375	15.6	106
13	In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. <i>Angewandte Chemie</i> , 2012 , 124, 3179-3183	3.6	70
12	In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3125-9	16.4	398
11	Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. Journal of Materials Chemistry, 2011 , 21, 5786		77
10	Upconversion nanoparticles for potential cancer theranostics. <i>Therapeutic Delivery</i> , 2011 , 2, 1235-9	3.8	13
9	Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. <i>Biomaterials</i> , 2011 , 32, 9364-73	15.6	251
8	Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. <i>ACS Nano</i> , 2011 , 5, 7000-9	16.7	874
7	Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. <i>Biomaterials</i> , 2011 , 32, 1110-20	15.6	548
6	Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy. <i>Angewandte Chemie</i> , 2011 , 123, 7523-7528	3.6	172
5	Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals. <i>Angewandte Chemie</i> , 2011 , 123, 10553-10556	3.6	44
4	Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7385-90	16.4	526
3	Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 10369-72	16.4	389
2	Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. <i>Biomaterials</i> , 2011 , 32, 6145-54	15.6	675
1	Recent applications of immunomodulatory biomaterials for disease immunotherapy. <i>Exploration</i> , 20210	0157	3