Michael J Mills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6249674/publications.pdf

Version: 2024-02-01

97	7,349	43	82
papers	citations	h-index	g-index
130	130	130	6221
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Limitations of assuming internal mixing between different aerosol species: a case study with sulfate geoengineering simulations. Atmospheric Chemistry and Physics, 2022, 22, 1739-1756.	1.9	6
2	Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth System Dynamics, 2022, 13, 885-909.	2.7	17
3	Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
4	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	1.9	65
5	Decadal Disruption of the QBO by Tropical Volcanic Supereruptions. Geophysical Research Letters, 2021, 48, e2020GL089687.	1.5	13
6	Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency. Atmospheric Chemistry and Physics, 2021, 21, 3395-3425.	1.9	16
7	Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble. Atmospheric Chemistry and Physics, 2021, 21, 3317-3343.	1.9	33
8	Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmospheric Chemistry and Physics, 2021, 21, 5015-5061.	1.9	54
9	Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations. Atmospheric Chemistry and Physics, 2021, 21, 10039-10063.	1.9	45
10	Extreme Ozone Loss Following Nuclear War Results in Enhanced Surface Ultraviolet Radiation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035079.	1.2	13
11	On Recent Large Antarctic Ozone Holes and Ozone Recovery Metrics. Geophysical Research Letters, 2021, 48, e2021GL095232.	1.5	28
12	Characteristics of Future Warmer Base States in CESM2. Earth and Space Science, 2020, 7, e2020EA001296.	1.1	14
13	An Evaluation of the Largeâ€Scale Atmospheric Circulation and Its Variability in CESM2 and Other CMIP Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032835.	1.2	55
14	Historical total ozone radiative forcing derived from CMIP6 simulations. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	44
15	Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties. Nature Communications, 2020, 11, 4526.	5.8	51
16	Seasonally Modulated Stratospheric Aerosol Geoengineering Alters the Climate Outcomes. Geophysical Research Letters, 2020, 47, e2020GL088337.	1.5	27
17	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	1.3	935
18	The potential impacts of a sulfur- and halogen-rich supereruption such as Los Chocoyos on the atmosphere and climate. Atmospheric Chemistry and Physics, 2020, 20, 6521-6539.	1.9	19

#	Article	IF	CITATIONS
19	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	1.3	189
20	Assessing terrestrial biogeochemical feedbacks in a strategically geoengineered climate. Environmental Research Letters, 2020, 15, 104043.	2.2	8
21	Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. Earth System Dynamics, 2020, 11, 579-601.	2.7	50
22	High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters, 2019, 46, 8329-8337.	1.5	249
23	Seasonal Injection Strategies for Stratospheric Aerosol Geoengineering. Geophysical Research Letters, 2019, 46, 7790-7799.	1.5	29
24	Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12773-12793.	1.2	38
25	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
26	Comparing Surface and Stratospheric Impacts of Geoengineering With Different SO ₂ Injection Strategies. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7900-7918.	1.2	56
27	Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6770-6790.	1.2	32
28	Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6750-6769.	1.2	12
29	Timescale for Detecting the Climate Response to Stratospheric Aerosol Geoengineering. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1233-1247.	1.2	34
30	Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2). Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351.	1.3	87
31	Modeled and Observed Volcanic Aerosol Control on Stratospheric NO _y and Cl _y . Journal of Geophysical Research D: Atmospheres, 2019, 124, 10283-10303.	1.2	7
32	The Regional Hydroclimate Response to Stratospheric Sulfate Geoengineering and the Role of Stratospheric Heating. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12587-12616.	1.2	73
33	Stratospheric Sulfate Aerosol Geoengineering Could Alter the Highâ€Latitude Seasonal Cycle. Geophysical Research Letters, 2019, 46, 14153-14163.	1.5	40
34	Holistic Assessment of SO 2 Injections Using CESM1(WACCM): Introduction to the Special Issue. Journal of Geophysical Research D: Atmospheres, 2019, 124, 444-450.	1.2	2
35	Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings. Atmospheric Chemistry and Physics, 2018, 18, 143-166.	1.9	10
36	Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt.ÂTambora. Atmospheric Chemistry and Physics, 2018, 18, 2307-2328.	1.9	41

#	Article	IF	CITATIONS
37	The Interactive Stratospheric Aerosol Model Intercomparison ProjectÂ(ISA-MIP): motivation and experimental design. Geoscientific Model Development, 2018, 11, 2581-2608.	1.3	57
38	CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project. Bulletin of the American Meteorological Society, 2018, 99, 2361-2371.	1.7	129
39	Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nature Geoscience, 2018, 11, 949-954.	5.4	85
40	Effects of Different Stratospheric SO ₂ Injection Altitudes on Stratospheric Chemistry and Dynamics. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4654-4673.	1.2	58
41	Stratospheric Aerosols, Polar Stratospheric Clouds, and Polar Ozone Depletion After the Mount Calbuco Eruption in 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,308.	1.2	31
42	Volcanic Radiative Forcing From 1979 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12491-12508.	1.2	87
43	Stratospheric Response in the First Geoengineering Simulation Meeting Multiple Surface Climate Objectives. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5762-5782.	1.2	17
44	Persistent polar ocean warming in a strategically geoengineered climate. Nature Geoscience, 2018, 11, 910-914.	5.4	29
45	Climatology of mesopause region nocturnal temperature, zonal wind and sodium density observed by sodium lidar over Hefei, China (32° N, 117° E). Atmospheric Chemistry and Physics, 2018, 18, 11683-1	1 16 95.	12
46	On the Role of Heterogeneous Chemistry in Ozone Depletion and Recovery. Geophysical Research Letters, 2018, 45, 7835-7842.	1.5	11
47	Meteoric smoke and H ₂ SO ₄ aerosols in the upper stratosphere and mesosphere. Geophysical Research Letters, 2017, 44, 1150-1157.	1.5	7
48	The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistryâ€climate model. Geophysical Research Letters, 2017, 44, 2556-2561.	1.5	53
49	The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere. Geophysical Research Letters, 2017, 44, 4280-4286.	1.5	16
50	Impacts of meteoric sulfur in the Earth's atmosphere. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7678-7701.	1.2	10
51	Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8940-8950.	1.2	35
52	Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,862.	1.2	32
53	The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,574.	1.2	95
54	First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,616.	1.2	114

#	Article	IF	CITATIONS
55	Sensitivity of Aerosol Distribution and Climate Response to Stratospheric SO ₂ Injection Locations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,591.	1.2	79
56	Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO ₂ Injections. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,557.	1.2	69
57	Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,061.	1.2	128
58	Asia Treads the Nuclear Path, Unaware That Self-Assured Destruction Would Result from Nuclear War. Journal of Asian Studies, 2017, 76, 437-456.	0.0	9
59	The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geoscientific Model Development, 2016, 9, 2701-2719.	1.3	138
60	Monsoon circulations and tropical heterogeneous chlorine chemistry in the stratosphere. Geophysical Research Letters, 2016, 43, 12,624.	1.5	23
61	Emergence of healing in the Antarctic ozone layer. Science, 2016, 353, 269-274.	6.0	462
62	Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2016, 121, 2332-2348.	1.2	175
63	Decadal reduction of Chinese agriculture after a regional nuclear war. Earth's Future, 2015, 3, 37-48.	2.4	28
64	Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme. Journal of Advances in Modeling Earth Systems, 2015, 7, 865-914.	1.3	33
65	A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models. Geoscientific Model Development, 2015, 8, 43-49.	1.3	51
66	Development of a Polar Stratospheric Cloud Model within the Community Earth System Model using constraints on Type I PSCs from the 2010–2011 Arctic winter. Journal of Advances in Modeling Earth Systems, 2015, 7, 551-585.	1.3	18
67	Nitrate deposition to surface snow at Summit, Greenland, following the 9 November 2000 solar proton event. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6938-6957.	1.2	16
68	The global extent of the mid stratospheric CN layer: A threeâ€dimensional modeling study. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1015-1030.	1.2	8
69	Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict. Earth's Future, 2014, 2, 161-176.	2.4	74
70	Stratospheric Sulfate Aerosols and Planetary Albedo. , 2014, , 771-776.		0
71	Recent anthropogenic increases in SO _{2} from Asia have minimal impact on stratospheric aerosol. Geophysical Research Letters, 2013, 40, 999-1004.	1.5	89
72	Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). Journal of Climate, 2013, 26, 7372-7391.	1.2	706

#	Article	IF	CITATIONS
73	Microphysical simulations of large volcanic eruptions: Pinatubo and Toba. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1880-1895.	1.2	80
74	The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,036.	1.2	202
75	Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmospheric Chemistry and Physics, 2012, 12, 4775-4793.	1.9	83
76	Reconciling modeled and observed temperature trends over Antarctica. Geophysical Research Letters, 2012, 39, .	1.5	17
77	Implications of extinction due to meteoritic smoke in the upper stratosphere. Geophysical Research Letters, 2011, 38, .	1.5	49
78	A climatology of cold air outbreaks over North America: WACCM and ERA-40 comparison and analysis. Journal of Geophysical Research, 2011, 116, .	3.3	25
79	Corrigendum to "Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere" published in Atmos. Chem. Phys., 11, 9303–9322, 2011. Atmospheric Chemistry and Physics, 2011, 11, 10125-10125.	1.9	1
80	Microphysical simulations of new particle formation in the upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics, 2011, 11, 9303-9322.	1.9	70
81	Potential climate impact of black carbon emitted by rockets. Geophysical Research Letters, 2010, 37, .	1.5	63
82	Intraâ€seasonal variability of polar mesospheric clouds due to interâ€hemispheric coupling. Geophysical Research Letters, 2009, 36, .	1.5	49
83	Atmospheric Photolysis of Sulfuric Acid. Advances in Quantum Chemistry, 2008, 55, 137-158.	0.4	15
84	Electron impact ionization: A new parameterization for $100~\rm eV$ to $1~\rm MeV$ electrons. Journal of Geophysical Research, $2008,113,.$	3.3	84
85	Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5307-5312.	3.3	114
86	Catastrophic ozone loss during passage of the Solar system through an interstellar cloud. Geophysical Research Letters, 2005, 32, .	1.5	17
87	Photolysis of sulfuric acid vapor by visible light as a source of the polar stratospheric CN layer. Journal of Geophysical Research, 2005, 110 , .	3.3	42
88	Mystery of the volcanic mass-independent sulfur isotope fractionation signature in the Antarctic ice core. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	33
89	Mesospheric sulfate aerosol layer. Journal of Geophysical Research, 2005, 110, .	3.3	33
90	Upper limit for the UV absorption cross sections of H2SO4. Geophysical Research Letters, 2000, 27, 2493-2496.	1.5	44

MICHAEL J MILLS

#	Article	IF	Citations
91	A 2D microphysical model of the polar stratospheric CN layer. Geophysical Research Letters, 1999, 26, 1133-1136.	1.5	42
92	Do Hydrofluorocarbons Destroy Stratospheric Ozone?. Science, 1994, 263, 71-75.	6.0	256
93	On the relationship between stratospheric aerosols and nitrogen dioxide. Geophysical Research Letters, 1993, 20, 1187-1190.	1.5	52
94	On the evaluation of ozone depletion potentials. Journal of Geophysical Research, 1992, 97, 825-842.	3.3	148
95	Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH ₃ Br) and dibromomethane (CH ₂ Br ₂). Geophysical Research Letters, 1992, 19, 2059-2062.	1.5	103
96	On the age of stratospheric air and ozone depletion potentials in polar regions. Journal of Geophysical Research, 1992, 97, 12993-12999.	3.3	44
97	Climatic Consequences and Agricultural Impacts of Nuclear Conflicts. , 0, , 328-340.		0