Hui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/624945/publications.pdf

Version: 2024-02-01

52	892	14	28
papers	citations	h-index	g-index
53	53	53	1320
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Robust self-cleaning effects of cotton fabrics coated with reduced graphene oxide (RGO)-titanium dioxide (TiO ₂) nanocomposites. Textile Reseach Journal, 2022, 92, 739-759.	2.2	3
2	The effects of cotton cellulose on both energy band gap of g-C3N4–TiO2 nanoparticles and enhanced photocatalytic properties of cotton-g-C3N4–TiO2 composites. Cellulose, 2022, 29, 193-212.	4.9	11
3	Adsorption-enhanced photocatalytic property of Ag-doped biochar/g-C ₃ N ₄ /TiO ₂ composite by incorporating cotton-based biochar. Nanotechnology, 2022, 33, 345402.	2.6	4
4	Effect of the crystalline structure of cotton cellulose on the photocatalytic activities of cotton fibers immobilized with TiO2 nanoparticles. Cellulose, 2022, 29, 6441-6459.	4.9	7
5	Photostability of TiO2-Coated Wool Fibers Exposed to Ultraviolet B, Ultraviolet A, and Visible Light Irradiation. Autex Research Journal, 2021, 21, 1-12.	1.1	3
6	Reactive Radical Species in Photocatalytic Activities of PET-Ag-TiO2 Nanoparticles Composites Under Visible Light Irradiation. Fibers and Polymers, 2021, 22, 597-611.	2.1	7
7	Photocatalytic mechanism and performance of a novel wool flake–BiFeO ₃ nanosheet–TiO ₂ core–shell-structured composite photocatalyst. Nanotechnology, 2021, 32, 275601.	2.6	6
8	Magnetically Recyclable Wool Keratin Modified Magnetite Powders for Efficient Removal of Cu2+ Ions from Aqueous Solutions. Nanomaterials, 2021, 11, 1068.	4.1	10
9	TiO ₂ modified orthocortical and paracortical cells having enhanced photocatalytic degradation and photoreduction properties. Nanotechnology, 2021, 32, 025714.	2.6	11
10	Photocatalytic Properties of Core-Shell Structured Wool-TiO2 Hybrid Composite Powders. Catalysts, 2021, 11, 12.	3.5	8
11	Photocatalytic Properties of a Novel Keratin char-TiO2 Composite Films Made through the Calcination of Wool Keratin Coatings Containing TiO2 Precursors. Catalysts, 2021, 11, 1366.	3.5	2
12	Photocatalytic Activities of PET Filaments Deposited with N-Doped TiO2 Nanoparticles Sensitized with Disperse Blue Dyes. Catalysts, 2020, 10, 531.	3.5	9
13	Enhanced Photocatalytic Properties of PET Filaments Coated with Ag-N Co-Doped TiO2 Nanoparticles Sensitized with Disperse Blue Dyes. Nanomaterials, 2020, 10, 987.	4.1	16
14	The disappearance of photocatalytic properties of titanium dioxide nanoparticles formed on PET fabrics treated in a simultaneous hydrothermal-dyeing process. Journal of the Textile Institute, 2018, 109, 1510-1520.	1.9	4
15	Simultaneous reactive dyeing and surface modification of polyamide fabric with TiO2 precursor finish using a one-step hydrothermal process. Textile Reseach Journal, 2018, 88, 2611-2623.	2.2	7
16	Enhanced photocatalytic activity of wool fibers having titanium dioxide nanoparticles formed inside their cortex. Nanotechnology, 2018, 29, 295606.	2.6	7
17	High photoactivity rutile-type TiO2 particles co-doped with multiple elements under visible light irradiation. Materials Research Express, 2018, 5, 105015.	1.6	6
18	Photocatalytic Activity of Dye Sensitized Hematite Nanoparticles on Cenospheres. Journal of Nanoscience and Nanotechnology, 2016, 16, 12433-12443.	0.9	7

#	Article	IF	Citations
19	Deposition of Nd-Doped Fe2O3 Nanoparticles on Cenosphere by Hydrothermal Method. Nano, 2016, 11, 1650026.	1.0	1
20	Preparation of magnetic and photocatalytic cenosphere deposited with Fe ₃ O ₄ /SiO ₂ /Eu-doped TiO ₂ core/shell nanoparticles. Journal of Materials Research, 2015, 30, 3700-3709.	2.6	13
21	Switching Oxygen Reduction Pathway by Exfoliating Graphitic Carbon Nitride for Enhanced Photocatalytic Phenol Degradation. Journal of Physical Chemistry Letters, 2015, 6, 958-963.	4.6	141
22	Fabrication of magnetic and photocatalytic polyamide fabric coated with Fe2O3 particles. Fibers and Polymers, 2015, 16, 378-387.	2.1	9
23	Hydrothermal Treatment of Wool Fibers with Tetrabutyl Titanate and Chitosan. Journal of Natural Fibers, 2015, 12, 518-530.	3.1	5
24	Preparation of magnetic PET fabric loaded with Fe ₃ O ₄ nanoparticles by hydrothermal method. Journal of the Textile Institute, 2015, 106, 1078-1088.	1.9	6
25	Structure and Properties of Cotton Fibers Modified with Titanium Sulfate and Urea under Hydrothermal Conditions. Journal of Engineered Fibers and Fabrics, 2014, 9, 155892501400900.	1.0	5
26	Modification and Dyeing of Silk Fabric Treated with Tetrabutyl Titanate by Hydrothermal Method. Journal of Natural Fibers, 2014, 11, 25-38.	3.1	5
27	Magnetic photocatalysts of cenospheres coated with Fe3O4/TiO2 core/shell nanoparticles decorated with Ag nanopartilces. Ceramics International, 2014, 40, 8547-8559.	4.8	70
28	Functional Modification with TiO ₂ Nanoparticles and Simultaneously Dyeing of Wool Fibers in a One-Pot Hydrothermal Process. Industrial & Engineering Chemistry Research, 2014, 53, 2030-2041.	3.7	22
29	Photocatalytic effects of wool fibers modified with solely TiO2 nanoparticles and N-doped TiO2 nanoparticles by using hydrothermal method. Chemical Engineering Journal, 2014, 254, 106-114.	12.7	26
30	Preparation of photocatalytic cenosphere immobilized with TiO ₂ nanoparticles by hydrothermal method. Journal of Industrial Textiles, 2014, 44, 99-114.	2.4	2
31	Immobilization of î±-Fe ₂ O ₃ Nanoparticles on PET Fiber by Low Temperature Hydrothermal Method. Industrial & Engineering Chemistry Research, 2013, 52, 7403-7412.	3.7	23
32	Immobilization of TiO2 nanoparticles on PET fabric modified with silane coupling agent by low temperature hydrothermal method. Fibers and Polymers, 2013, 14, 43-51.	2.1	22
33	Fabrication of Magnetic Cenosphere Deposited with Fe ₃ O ₄ Nanoparticles by Hydrothermal Method. Advanced Materials Research, 2013, 750-752, 2021-2025.	0.3	1
34	Silver plating on hollow glass microsphere and coating finishing of PET/cotton fabric. Journal of Industrial Textiles, 2013, 42, 283-296.	2.4	14
35	Imbuing titanium dioxide into cotton fabric using tetrabutyl titanate by hydrothermal method. Journal of the Textile Institute, 2012, 103, 885-892.	1.9	3
36	Fabrication of photocatalytic TiO ₂ nanoparticle film on PET fabric by hydrothermal method. Textile Reseach Journal, 2012, 82, 747-754.	2.2	31

#	Article	IF	CITATIONS
37	Properties of (Ni-P)–SnO2(nanometer) electroless composite coating on PET fabrics. Journal of the Textile Institute, 2012, 103, 1-7.	1.9	6
38	One-step hydrothermal synthesis of magnetic Fe3O4 nanoparticles immobilized on polyamide fabric. Applied Surface Science, 2012, 258, 4952-4959.	6.1	101
39	Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric. Applied Surface Science, 2012, 258, 10034-10041.	6.1	64
40	Modification of wool fabric treated with tetrabutyl titanate by hydrothermal method. Journal of the Textile Institute, 2012, 103, 1108-1115.	1.9	7
41	Immobilization of magnetic magnetite nanoparticle film on polyamide fabric. Journal of Applied Polymer Science, 2012, 125, 3770-3777.	2.6	13
42	Immobilization of nanoparticle titanium dioxide membrane on polyamide fabric by low temperature hydrothermal method. Thin Solid Films, 2012, 520, 5922-5927.	1.8	22
43	Comparative Study of Electroless Ni-P, Cu, Ag, and Cu-Ag Plating on Polyamide Fabrics. Journal of Industrial Textiles, 2011, 41, 25-40.	2.4	23
44	Modification of PET Fabric Using Tetrabutyl Titanate by Hydrothermal Method. Journal of Fiber Science and Technology, 2011, 67, 225-231.	0.0	2
45	Effect of weight percentage gain on properties of electroless Ni–P plating on polyethylene terephthalate (PET) fabric. Surface Engineering, 2011, 27, 211-216.	2.2	6
46	Study on properties of electroless (Ni–P)–Fe ₃ O ₄ (nanometre) composite plated PET fabrics. Surface Engineering, 2011, 27, 5-10.	2.2	13
47	Improving the dyeing properties and softness of hemp fabric using chitosan and epoxy modified silicone oil. Journal of the Textile Institute, 2010, 101, 849-857.	1.9	12
48	Study on the properties of woolen fabric treated with chitosan/TiO ₂ sol. Journal of the Textile Institute, 2010, 101, 842-848.	1.9	2
49	Properties of (Ni-P)-ZnO Electroless Nanocoating on PET Fabrics. Journal of Industrial Textiles, 2010, 40, 85-96.	2.4	1
50	Surface emissivity of fabric in the 8–14 μ m waveband. Journal of the Textile Institute, 2009, 100, 90-94.	1.9	21
51	Structure and properties of hemp fabric treated with chitosan and dyed with mixed epoxyâ€modified silicone oil. Journal of Applied Polymer Science, 2009, 114, 1377-1383.	2.6	3
52	Near-infrared green camouflage of cotton fabrics using vat dyes. Journal of the Textile Institute, 2008, 99, 83-88.	1.9	57