David M Engle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6249447/publications.pdf

Version: 2024-02-01

		172457	206112
51	3,795 citations	29	48
papers	citations	h-index	g-index
-1	-1	-1	0756
51	51	51	2756
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Moderate Grazer Density Stabilizes Forage Availability More Than Patch Burning in Low-Stature Grassland. Land, 2021, 10, 395.	2.9	2
2	Pyric herbivory, scales of heterogeneity and drought. Functional Ecology, 2018, 32, 1599-1608.	3.6	15
3	Factors Affecting Public Preferences for Grassland Landscape Heterogeneity in the Great Plains. Environmental Management, 2017, 60, 922-930.	2.7	11
4	Climate Extremes, Vegetation Change, and Decoupling of Interactive Fire-Grazing Processes Exacerbate Fly Parasitism of Cattle. Environmental Entomology, 2017, 46, 191-200.	1.4	5
5	Preference for Grassland Heterogeneity: Implications for Biodiversity in the Great Plains. Society and Natural Resources, 2017, 30, 601-612.	1.9	11
6	Using Regional Climate Projections to Guide Grassland Community Restoration in the Face of Climate Change. Frontiers in Plant Science, 2017, 8, 730.	3.6	15
7	Measured Soil Moisture is a Better Predictor of Large Growingâ€Season Wildfires than the Keetch–Byram Drought Index. Soil Science Society of America Journal, 2017, 81, 490-502.	2.2	23
8	Temporal variability in aboveground plant biomass decreases as spatial variability increases. Ecology, 2016, 97, 555-560.	3.2	30
9	Bee Abundance and Nutritional Status in Relation to Grassland Management Practices in an Agricultural Landscape. Environmental Entomology, 2016, 45, 338-347.	1.4	15
10	Constraints to restoring fire and grazing ecological processes to optimize grassland vegetation structural diversity. Ecological Engineering, 2016, 95, 865-875.	3.6	32
11	Adapting the Fire-Grazing Interaction to Small Pastures in a Fragmented Landscape for Grassland Bird Conservation. Rangeland Ecology and Management, 2016, 69, 300-309.	2.3	25
12	Effect of pyric herbivory on source–sink dynamics in grassland birds. Journal of Applied Ecology, 2016, 53, 1004-1012.	4.0	21
13	Plant Invasions or Fire Policy: Which Has Altered Fire Behavior More in Tallgrass Prairie?. Ecosystems, 2016, 19, 356-368.	3.4	30
14	Exotic-Dominated Grasslands Show Signs of Recovery with Cattle Grazing and Fire. PLoS ONE, 2016, 11, e0165758.	2.5	11
15	Temporal variability in aboveground plant biomass decreases as spatial variability increases. Ecology, 2016, , .	3.2	2
16	Soil Moisture Affects Growing-Season Wildfire Size in the Southern Great Plains. Soil Science Society of America Journal, 2015, 79, 1567-1576.	2.2	78
17	Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecological Applications, 2015, 25, 662-672.	3.8	121
18	Meta-Analysis of Exotic Forages as Invasive Plants in Complex Multi-Functioning Landscapes. Invasive Plant Science and Management, 2015, 8, 292-306.	1.1	33

#	Article	IF	CITATIONS
19	Landâ€use history and an invasive grass affect tallgrass prairie sedge community composition. Applied Vegetation Science, 2015, 18, 209-219.	1.9	4
20	Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	29
21	REVIEW: Evidence of negative effects of anthropogenic structures on wildlife: a review of grouse survival and behaviour. Journal of Applied Ecology, 2014, 51, 1680-1689.	4.0	87
22	Fire induced reproductive mechanisms of a Symphoricarpos (Caprifoliaceae) shrub after dormant season burning., 2014, 55, 80.		13
23	Alteration of hydrological processes and streamflow with juniper (<i>Juniperus virginiana</i>) encroachment in a mesic grassland catchment. Hydrological Processes, 2014, 28, 6173-6182.	2.6	68
24	Effects of grassland management practices on ant functional groups in central North America. Journal of Insect Conservation, 2013, 17, 699-713.	1.4	42
25	Inconsistent outcomes of heterogeneity-based management underscore importance of matching evaluation to conservation objectives. Environmental Science and Policy, 2013, 31, 53-60.	4.9	29
26	An Invasive Grass Increases Live Fuel Proportion and Reduces Fire Spread in a Simulated Grassland. Ecosystems, 2013, 16, 158-169.	3.4	36
27	The rising Great Plains fire campaign: citizens' response to woody plant encroachment. Frontiers in Ecology and the Environment, 2013, 11, e64.	4.0	152
28	Multivariate Analysis of Rangeland Vegetation and Soil Organic Carbon Describes Degradation, Informs Restoration and Conservation. Land, 2013, 2, 328-350.	2.9	18
29	Conservation of Pattern and Process: Developing an Alternative Paradigm of Rangeland Management. Rangeland Ecology and Management, 2012, 65, 579-589.	2.3	151
30	Nature reserves as catalysts for landscape change. Frontiers in Ecology and the Environment, 2012, 10, 144-152.	4.0	45
31	Untangling the effects of fire, grazing, and land-use legacies on grassland butterfly communities. Biodiversity and Conservation, 2012, 21, 2719-2746.	2.6	76
32	Effects of fire and grazing on grasshopper sparrow nest survival. Journal of Wildlife Management, 2012, 76, 19-27.	1.8	59
33	Spatial heterogeneity across five rangelands managed with pyricâ€herbivory. Journal of Applied Ecology, 2012, 49, 903-910.	4.0	65
34	Pyric–Herbivory and Cattle Performance in Grassland Ecosystems. Rangeland Ecology and Management, 2011, 64, 659-663.	2.3	68
35	A cross-taxonomic comparison of insect responses to grassland management and land-use legacies. Ecosphere, 2011, 2, art131.	2.2	55
36	Another tool in the toolbox? Using fire and grazing to promote bird diversity in highly fragmented landscapes. Ecosphere, 2011, 2, art28.	2.2	42

3

#	Article	IF	Citations
37	Ungulate preference for burned patches reveals strength of fire–grazing interaction. Ecology and Evolution, 2011, 1, 132-144.	1.9	211
38	Postfledging Survival of Grasshopper Sparrows in Grasslands Managed with Fire and Grazing. Condor, 2011, 113, 429-437.	1.6	28
39	Tallgrass Prairie Plant Community Dynamics Along a Canopy Cover Gradient of Eastern Redcedar (Juniperus virginiana L.). Rangeland Ecology and Management, 2010, 63, 638-644.	2.3	46
40	Restoring biopedturbation in grasslands with anthropogenic focal disturbance. Plant Ecology, 2010, 210, 331-342.	1.6	12
41	Identification of subpopulations of North American elk (<i>Cervus elaphus</i> L.) using multiple lines of evidence: habitat use, dietary choice, and fecal stable isotopes. Ecological Research, 2010, 25, 789-800.	1.5	10
42	Pyric Herbivory: Rewilding Landscapes through the Recoupling of Fire and Grazing. Conservation Biology, 2009, 23, 588-598.	4.7	402
43	Seed dispersal byBison bisonin a tallgrass prairie. Journal of Vegetation Science, 2008, 19, 769-778.	2.2	49
44	Avian community response to vegetation and structural features in grasslands managed with fire and grazing. Biological Conservation, 2008, 141, 1196-1203.	4.1	129
45	Is Altering Grazing Selectivity of Invasive Forage Species With Patch Burning More Effective Than Herbicide Treatments?. Rangeland Ecology and Management, 2007, 60, 253-260.	2.3	70
46	Landscape heterogeneity and fire behavior: scale-dependent feedback between fire and grazing processes. Landscape Ecology, 2007, 22, 507-516.	4.2	60
47	Markov models of land cover dynamics in a southern Great Plains grassland region. Landscape Ecology, 2007, 22, 1383-1393.	4.2	51
48	SHOULD HETEROGENEITY BE THE BASIS FOR CONSERVATION? GRASSLAND BIRD RESPONSE TO FIRE AND GRAZING. , 2006, 16, 1706-1716.		415
49	Tree invasion constrains the influence of herbaceous structure in grassland bird habitats. Ecoscience, 2004, 11, 55-63.	1.4	50
50	Restoring Heterogeneity on Rangelands: Ecosystem Management Based on Evolutionary Grazing Patterns. BioScience, 2001, 51, 625.	4.9	586
51	AVIAN RESPONSE TO LANDSCAPE CHANGE IN FRAGMENTED SOUTHERN GREAT PLAINS GRASSLANDS. , 2001, 11, 47-59.		157