Daniel Sepúlveda-Crespo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6249400/publications.pdf

Version: 2024-02-01

27 papers

562 citations

687363 13 h-index 610901 24 g-index

28 all docs

28 docs citations

times ranked

28

676 citing authors

#	Article	IF	CITATIONS
1	Polyanionic carbosilane dendrimer-conjugated antiviral drugs as efficient microbicides: Recent trends and developments in HIV treatment/therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1481-1498.	3.3	60
2	Prevention vaginally of HIV-1 transmission in humanized BLT mice and mode of antiviral action of polyanionic carbosilane dendrimer G2-S16. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1299-1308.	3.3	52
3	Synergistic activity profile of carbosilane dendrimer G2-STE16 in combination with other dendrimers and antiretrovirals as topical anti-HIV-1 microbicide. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 609-618.	3.3	49
4	Triple combination of carbosilane dendrimers, tenofovir and maraviroc as potential microbicide to prevent HIV-1 sexual transmission. Nanomedicine, 2015, 10, 899-914.	3.3	44
5	Mechanistic Studies of Viral Entry: An Overview of Dendrimer-Based Microbicides As Entry Inhibitors Against Both HIV and HSV-2 Overlapped Infections. Medicinal Research Reviews, 2017, 37, 149-179.	10.5	44
6	Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 49-58.	3.3	38
7	Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides. Nanoscale, 2015, 7, 14669-14683.	5.6	33
8	Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Marine Drugs, 2020, 18, 187.	4.6	32
9	Drug discovery technologies: <i>Caenorhabditis elegans</i> as a model for anthelmintic therapeutics. Medicinal Research Reviews, 2020, 40, 1715-1753.	10.5	26
10	Hepatitis C virus vaccine design: focus on the humoral immune response. Journal of Biomedical Science, 2020, 27, 78.	7.0	23
11	Dendronized magnetic nanoparticles for HIV-1 capture and rapid diagnostic. Colloids and Surfaces B: Biointerfaces, 2019, 181, 360-368.	5.0	22
12	Sulfonate-ended carbosilane dendrimers with a flexible scaffold cause inactivation of HIV-1 virions and gp120 shedding. Nanoscale, 2018, 10, 8998-9011.	5.6	20
13	Carbosilane dendrons with fatty acids at the core as a new potential microbicide against HSV-2/HIV-1 co-infection. Nanoscale, 2017, 9, 17263-17273.	5.6	19
14	HCV Cure With Direct-Acting Antivirals Improves Liver and Immunological Markers in HIV/HCV-Coinfected Patients. Frontiers in Immunology, 2021, 12, 723196.	4.8	14
15	Dendrimeric based microbicides against sexual transmitted infections associated to heparan sulfate. RSC Advances, 2016, 6, 46755-46764.	3.6	13
16	Synthesis of bow-tie carbosilane dendrimers and their HIV antiviral capacity: A comparison of the dendritic topology on the biological process. European Polymer Journal, 2019, 119, 200-212.	5.4	13
17	Innate Immune Response against Hepatitis C Virus: Targets for Vaccine Adjuvants. Vaccines, 2020, 8, 313.	4.4	12
18	Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs, 2021, 81, 419-443.	10.9	12

#	Article	IF	CITATIONS
19	Effect of Several HIV Antigens Simultaneously Loaded with G2-NN16 Carbosilane Dendrimer in the Cell Uptake and Functionality of Human Dendritic Cells. Bioconjugate Chemistry, 2016, 27, 2844-2849.	3.6	8
20	New anionic carbosilane dendrons functionalized with a DO3A ligand at the focal point for the prevention of HIV-1 infection. Antiviral Research, 2017, 146, 54-64.	4.1	8
21	G2-S16 dendrimer microbicide does not interfere with the vaginal immune system. Journal of Nanobiotechnology, 2019, 17, 65.	9.1	8
22	Baseline and <scp>timeâ€updated</scp> factors in preclinical development of anionic dendrimers as successful <scp>antiâ€HIV</scp> â€1 vaginal microbicides. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1774.	6.1	5
23	Antiviral Action of Sulfonate Anionic Carbosilane Dendrimer as a Topical Microbicide against HIV Infection. AIDS Research and Human Retroviruses, 2014, 30, A205-A205.	1.1	4
24	Broad-spectrum Anti-HIV-1 Activity of Anionic Carbosilane Dendrimers and Synergy in Combination with Maraviroc and Tenofovir as Topical Microbicide. AIDS Research and Human Retroviruses, 2014, 30, A144-A144.	1.1	1
25	BMS Derivatives C7â€Linked to βâ€Cyclodextrin and Hyperbranched Polyglycerol Retain Activity against R5â€HIVâ€1 NLAD8 Isolates and Can Be Deemed Potential Microbicides. ChemMedChem, 2021, 16, 2217-2222.	3.2	1
26	Negative impact of HIV infection on broad-spectrum anti-HCV neutralizing antibody titers in HCV-infected patients with advanced HCV-related cirrhosis. Biomedicine and Pharmacotherapy, 2022, 150, 113024.	5.6	1
27	Dendrimers as a Candidate for Microbicide in Prevention of HIV-1 Infection in Women: Steps toward Their Clinical Evaluation., 2019,, 173-205.		O