
Richard T Premont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6249348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The manifold roles of protein S-nitrosylation in the life of insulin. Nature Reviews Endocrinology, 2022, 18, 111-128.	9.6	10
2	Hypoxic vasodilatory defect and pulmonary hypertension in mice lacking hemoglobin Î ² -cysteine93 S-nitrosylation. JCI Insight, 2022, 7, .	5.0	10
3	Optimized S-nitrosohemoglobin Synthesis in Red Blood Cells to Preserve Hypoxic Vasodilation Via <i>β</i> Cys93. Journal of Pharmacology and Experimental Therapeutics, 2022, 382, 1-10.	2.5	1
4	Brain-specific deletion of GIT1 impairs cognition and alters phosphorylation of synaptic protein networks implicated in schizophrenia susceptibility. Molecular Psychiatry, 2022, 27, 3272-3285.	7.9	5
5	Red Blood Cell-Mediated S-Nitrosohemoglobin-Dependent Vasodilation: Lessons Learned from a β-Globin Cys93 Knock-In Mouse. Antioxidants and Redox Signaling, 2021, 34, 936-961.	5.4	13
6	Microcephaly with altered cortical layering in GIT1 deficiency revealed by quantitative neuroimaging. Magnetic Resonance Imaging, 2021, 76, 26-38.	1.8	4
7	An optimized protocol for isolation of S-nitrosylated proteins from C.Âelegans. STAR Protocols, 2021, 2, 100547.	1.2	1
8	GSNOR regulates cardiomyocyte differentiation and maturation through protein S-nitrosylation. , 2021, 1, .		0
9	The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Molecular Aspects of Medicine, 2021, 84, 101056.	6.4	9
10	Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology. Circulation Research, 2020, 126, 129-158.	4.5	68
11	Single-Cell RNA Sequencing Identifies Yes-Associated Protein 1–Dependent Hepatic Mesothelial Progenitors in Fibrolamellar Carcinoma. American Journal of Pathology, 2020, 190, 93-107.	3.8	10
12	Increased Glutaminolysis Marks Active Scarring in Nonalcoholic Steatohepatitis Progression. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 1-21.	4.5	58
13	Reply to Schierwagen et al.: β-Arrestins in liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27085-27086.	7.1	0
14	β-Arrestin2 is a critical component of the GPCR–eNOS signalosome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11483-11492.	7.1	20
15	Essential Role of Hemoglobin βCys93 in Cardiovascular Physiology. Physiology, 2020, 35, 234-243.	3.1	13
16	Keys to the Kingdom: GPCR phosphorylation patterns direct βâ€arrestin. EMBO Reports, 2020, 21, e51249.	4.5	5
17	AKR1A1 is a novel mammalian S-nitroso-glutathione reductase. Journal of Biological Chemistry, 2019, 294, 18285-18293.	3.4	28
18	Letter by Reynolds et al Regarding Article, "Hemoglobin β93 Cysteine Is Not Required for Export of Nitric Oxide Bioactivity From the Red Blood Cellâ€: Circulation, 2019, 140, e758-e759.	1.6	5

#	Article	IF	CITATIONS
19	Dysregulated activation of fetal liver programme in acute liver failure. Gut, 2019, 68, 1076-1087.	12.1	21
20	Niclosamide-induced Wnt signaling inhibition in colorectal cancer is mediated by autophagy. Biochemical Journal, 2019, 476, 535-546.	3.7	44
21	Hedgehog-YAP Signaling Pathway Regulates Clutaminolysis to Control Activation of Hepatic Stellate Cells. Gastroenterology, 2018, 154, 1465-1479.e13.	1.3	205
22	GIT2—A keystone in ageing and age-related disease. Ageing Research Reviews, 2018, 43, 46-63.	10.9	29
23	Niclosamide: Beyond an antihelminthic drug. Cellular Signalling, 2018, 41, 89-96.	3.6	315
24	GRK5 – A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Frontiers in Pharmacology, 2018, 9, 1484.	3.5	19
25	Microbial nitrogen limitation in the mammalian large intestine. Nature Microbiology, 2018, 3, 1441-1450.	13.3	107
26	Liver regeneration requires Yap1-TGFβ-dependent epithelial-mesenchymal transition in hepatocytes. Journal of Hepatology, 2018, 69, 359-367.	3.7	110
27	RNA Binding Proteins Control Transdifferentiation of Hepatic Stellate Cells into Myofibroblasts. Cellular Physiology and Biochemistry, 2018, 48, 1215-1229.	1.6	13
28	GIT1 regulates synaptic structural plasticity underlying learning. PLoS ONE, 2018, 13, e0194350.	2.5	10
29	Caveolin 1 and G-Protein–Coupled Receptor Kinase-2 Coregulate Endothelial Nitric Oxide Synthase Activity in Sinusoidal Endothelial Cells. American Journal of Pathology, 2017, 187, 896-907.	3.8	16
30	Loss of pericyte smoothened activity in mice with genetic deficiency of leptin. BMC Cell Biology, 2017, 18, 20.	3.0	16
31	RNA-Binding Protein IGF2BP3 Regulates Cell Fate Decisions that Drive Cirrhosis Pathogenesis. Gastroenterology, 2017, 152, S1073.	1.3	0
32	Niclosamide-conjugated polypeptide nanoparticles inhibit Wnt signaling and colon cancer growth. Nanoscale, 2017, 9, 12709-12717.	5.6	38
33	Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1–PAK3 signaling in neuroplasticity. Molecular Psychiatry, 2017, 22, 417-429.	7.9	34
34	\hat{I}^2 -Arrestin2 mediates progression of murine primary myelofibrosis. JCI Insight, 2017, 2, .	5.0	5
35	Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption. Aging, 2017, 9, 706-740.	3.1	15
36	Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT–PIX complexes. Journal of Cell Science, 2016, 129, 1963-1974.	2.0	96

#	Article	IF	CITATIONS
37	GRK5 Deficiency Leads to Selective Basal Forebrain Cholinergic Neuronal Vulnerability. Scientific Reports, 2016, 6, 26116.	3.3	10
38	Hedgehog regulates yesâ€associated protein 1 in regenerating mouse liver. Hepatology, 2016, 64, 232-244.	7.3	94
39	Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches. Gut, 2016, 65, 683-692.	12.1	28
40	Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Seminars in Cell and Developmental Biology, 2016, 50, 95-104.	5.0	46
41	Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death and Disease, 2016, 7, e2096-e2096.	6.3	42
42	Nuclear GIT2 Is an ATM Substrate and Promotes DNA Repair. Molecular and Cellular Biology, 2015, 35, 1081-1096.	2.3	28
43	Presynaptic Deletion of GIT Proteins Results in Increased Synaptic Strength at a Mammalian Central Synapse. Neuron, 2015, 88, 918-925.	8.1	33
44	Structure–activity relationship studies of QS11, a small molecule Wnt synergistic agonist. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4838-4842.	2.2	15
45	Accumulation of duct cells with activated YAP parallels fibrosis progression in non-alcoholic fatty liver disease. Journal of Hepatology, 2015, 63, 962-970.	3.7	101
46	Genetic Deletion of β-Arrestin-2 and the Mitigation of Established Airway Hyperresponsiveness in a Murine Asthma Model. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 346-354.	2.9	21
47	GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Frontiers in Endocrinology, 2015, 6, 191.	3.5	25
48	β-arrestin2 Is Necessary for Development of MPLW515L Mutant Primary Myelofibrosis. Blood, 2015, 126, 486-486.	1.4	0
49	Endothelial Nitric-oxide Synthase (eNOS) Is Activated through G-protein-coupled Receptor Kinase-interacting Protein 1 (GIT1) Tyrosine Phosphorylation and Src Protein. Journal of Biological Chemistry, 2014, 289, 18163-18174.	3.4	37
50	αPIX RhoGEF Supports Positive Selection by Restraining Migration and Promoting Arrest of Thymocytes. Journal of Immunology, 2014, 192, 3228-3238.	0.8	11
51	Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut, 2014, 63, 1333-1344.	12.1	102
52	Grk5l Controls Heart Development by Limiting mTOR Signaling during Symmetry Breaking. Cell Reports, 2013, 4, 625-632.	6.4	36
53	Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology, 2013, 58, 1801-1813.	7.3	105
54	Smoothened is a master regulator of adult liver repair. Journal of Clinical Investigation, 2013, 123, 2380-94.	8.2	170

#	Article	IF	CITATIONS
55	G-protein-coupled Receptor Kinase Interactor-1 (GIT1) Is a New Endothelial Nitric-oxide Synthase (eNOS) Interactor with Functional Effects on Vascular Homeostasis*. Journal of Biological Chemistry, 2012, 287, 12309-12320.	3.4	35
56	The role of GRK6 in animal models of Parkinson's Disease and L-DOPA treatment. Scientific Reports, 2012, 2, 301.	3.3	22
57	Hedgehog Controls Hepatic Stellate Cell Fate by Regulating Metabolism. Gastroenterology, 2012, 143, 1319-1329.e11.	1.3	201
58	The cytoskeletal regulatory scaffold protein GIT2 modulates mesenchymal stem cell differentiation and osteoblastogenesis. Biochemical and Biophysical Research Communications, 2012, 425, 407-412.	2.1	19
59	Determining the Absolute Requirement of G Protein–Coupled Receptor Kinase 5 for Pathological Cardiac Hypertrophy. Circulation Research, 2012, 111, 1048-1053.	4.5	82
60	Signals from dying hepatocytes trigger growth of liver progenitors. Gut, 2010, 59, 655-665.	12.1	143
61	GRK5 Deficiency Accelerates β-Amyloid Accumulation in Tg2576 Mice via Impaired Cholinergic Activity. Journal of Biological Chemistry, 2010, 285, 41541-41548.	3.4	33
62	G Protein-coupled Receptor Kinases Phosphorylate LRP6 in the Wnt Pathway. Journal of Biological Chemistry, 2009, 284, 35040-35048.	3.4	58
63	Reciprocal Regulation of the Platelet-Derived Growth Factor Receptor-Î ² and G Protein-Coupled Receptor Kinase 5 by Cross-Phosphorylation: Effects on Catalysis. Molecular Pharmacology, 2009, 75, 626-636.	2.3	18
64	GRK5 Deficiency Leads to Reduced Hippocampal Acetylcholine Level via Impaired Presynaptic M2/M4 Autoreceptor Desensitization. Journal of Biological Chemistry, 2009, 284, 19564-19571.	3.4	41
65	Metastasis: Wherefore Arf Thou?. Current Biology, 2009, 19, R1036-R1038.	3.9	3
66	Morphine-induced physiological and behavioral responses in mice lacking G protein-coupled receptor kinase 6. Drug and Alcohol Dependence, 2009, 104, 187-196.	3.2	36
67	Augmented axonal defects and synaptic degenerative changes in female GRK5 deficient mice. Brain Research Bulletin, 2009, 78, 145-151.	3.0	16
68	Anxiety-like behaviors in mice lacking GIT2. Neuroscience Letters, 2009, 451, 156-161.	2.1	22
69	Impaired fear response in mice lacking GIT1. Neuroscience Letters, 2009, 458, 79-83.	2.1	37
70	Granulocyte chemotaxis and disease expression are differentially regulated by GRK subtype in an acute inflammatory arthritis model (K/BxN). Clinical Immunology, 2008, 129, 115-122.	3.2	34
71	Consensus nomenclature for the human ArfGAP domain-containing proteins. Journal of Cell Biology, 2008, 182, 1039-1044.	5.2	144
72	Physiological Roles of G Protein–Coupled Receptor Kinases and Arrestins. Annual Review of Physiology, 2007, 69, 511-534.	13.1	436

#	Article	IF	CITATIONS
73	G protein-coupled receptor kinase 6 controls chronicity and severity of dextran sodium sulphate-induced colitis in mice. Gut, 2007, 56, 847-854.	12.1	45
74	Differential Expression of the ARF GAP Genes GIT1 and GIT2 in Mouse Tissues. Journal of Histochemistry and Cytochemistry, 2007, 55, 1039-1048.	2.5	42
75	GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiology of Aging, 2007, 28, 1873-1888.	3.1	68
76	GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin. Cellular Signalling, 2007, 19, 1733-1744.	3.6	56
77	β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor. Journal of Biological Chemistry, 2006, 281, 1261-1273.	3.4	651
78	Regulation of Neuroendocrine Exocytosis by the ARF6 GTPase-activating Protein GIT1. Journal of Biological Chemistry, 2006, 281, 7919-7926.	3.4	30
79	beta-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16284-16289.	7.1	208
80	Regulation of the Platelet-derived Growth Factor Receptor-Î ² by G Protein-coupled Receptor Kinase-5 in Vascular Smooth Muscle Cells Involves the Phosphatase Shp2. Journal of Biological Chemistry, 2006, 281, 37758-37772.	3.4	36
81	Once and Future Signaling: G Protein-Coupled Receptor Kinase Control of Neuronal Sensitivity. NeuroMolecular Medicine, 2005, 7, 129-148.	3.4	24
82	A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nature Medicine, 2005, 11, 952-958.	30.7	234
83	Mutational Analysis of the Arf1•GTP/Arf GAP Interface Reveals an Arf1 Mutant that Selectively Affects the Arf GAP ASAP1. Current Biology, 2005, 15, 2164-2169.	3.9	21
84	Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3513-3518.	7.1	335
85	ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. Journal of Cell Biology, 2005, 168, 281-290.	5.2	128
86	The Arf GAPs AGAP1 and AGAP2 distinguish between the adaptor protein complexes AP-1 and AP-3. Journal of Cell Science, 2005, 118, 3555-3566.	2.0	74
87	GRK6 deficiency is associated with enhanced CXCR4-mediated neutrophil chemotaxis in vitro and impaired responsiveness to G-CSF in vivo. Journal of Leukocyte Biology, 2004, 75, 698-704.	3.3	81
88	DESENSITIZATION OF G PROTEIN–COUPLED RECEPTORS AND NEURONAL FUNCTIONS. Annual Review of Neuroscience, 2004, 27, 107-144.	10.7	755
89	Mammalian Scribble Forms a Tight Complex with the βPIX Exchange Factor. Current Biology, 2004, 14, 987-995.	3.9	195
90	ACAP1 Promotes Endocytic Recycling by Recognizing Recycling Sorting Signals. Developmental Cell, 2004, 7, 771-776.	7.0	97

6

#	Article	IF	CITATIONS
91	Differences between AGAP1, ASAP1 and Arf GAP1 in substrate recognition: interaction with the N-terminus of Arf1. Cellular Signalling, 2004, 16, 1033-1044.	3.6	28
92	The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPase-activating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cellular Signalling, 2004, 16, 1001-1011.	3.6	78
93	Differences between AGAP1, ASAP1 and Arf GAP1 in substrate recognition: interaction with the N-terminus of Arf1. Cellular Signalling, 2004, 16, 1033-1044.	3.6	23
94	GIT Proteins: Arf Gaps and Signaling Scaffolds. , 2004, , 159-183.		1
95	Dopaminergic Supersensitivity in G Protein-Coupled Receptor Kinase 6-Deficient Mice. Neuron, 2003, 38, 291-303.	8.1	208
96	The GIT Family of Proteins Forms Multimers and Associates with the Presynaptic Cytomatrix Protein Piccolo. Journal of Biological Chemistry, 2003, 278, 6291-6300.	3.4	122
97	Increased Acute Inflammation, Leukotriene B4-Induced Chemotaxis, and Signaling in Mice Deficient for G Protein-Coupled Receptor Kinase 6. Journal of Immunology, 2003, 171, 6128-6134.	0.8	64
98	GIPC Interacts with the \hat{l}^21 -Adrenergic Receptor and Regulates \hat{l}^21 -Adrenergic Receptor-mediated ERK Activation. Journal of Biological Chemistry, 2003, 278, 26295-26301.	3.4	96
99	Endothelin-1 Activates Endothelial Cell Nitric-oxide Synthase via Heterotrimeric G-protein βγ Subunit Signaling to Protein Kinase B/Akt. Journal of Biological Chemistry, 2003, 278, 49929-49935.	3.4	132
100	Interaction between Liprin-Î \pm and GIT1 Is Required for AMPA Receptor Targeting. Journal of Neuroscience, 2003, 23, 1667-1677.	3.6	146
101	G Protein-coupled Receptor Kinase 5 Regulates β1-Adrenergic Receptor Association with PSD-95. Journal of Biological Chemistry, 2002, 277, 1607-1613.	3.4	57
102	Defective lymphocyte chemotaxis in \hat{l}^2 -arrestin2- and GRK6-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7478-7483.	7.1	283
103	Vasoactive Intestinal Polypeptide Type-1 Receptor Regulation. Journal of Biological Chemistry, 2002, 277, 25519-25526.	3.4	47
104	ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. Journal of Cell Biology, 2002, 159, 69-78.	5.2	174
105	Identification of novel G protein-coupled receptor-interacting proteins. Methods in Enzymology, 2002, 343, 611-621.	1.0	9
106	Seven-transmembrane receptors. Nature Reviews Molecular Cell Biology, 2002, 3, 639-650.	37.0	2,357
107	[36] Purification and characterization of GIT family of ADP-ribosylation factor (ARF) GTPase-activating proteins. Methods in Enzymology, 2001, 329, 335-343.	1.0	6
108	Following the trace of elusive amines. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9474-9475.	7.1	152

#	Article	IF	CITATIONS
109	β-Arrestin-mediated ADP-ribosylation Factor 6 Activation and β2-Adrenergic Receptor Endocytosis. Journal of Biological Chemistry, 2001, 276, 42509-42513.	3.4	204
110	Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proceedings of the United States of America, 2000, 97, 1119-1124.	7.1	159
111	GIT Proteins, A Novel Family of Phosphatidylinositol 3,4,5-Trisphosphate-stimulated GTPase-activating Proteins for ARF6. Journal of Biological Chemistry, 2000, 275, 13901-13906.	3.4	142
112	The GIT Family of ADP-ribosylation Factor GTPase-activating Proteins. Journal of Biological Chemistry, 2000, 275, 22373-22380.	3.4	125
113	Reply: receptor specificity of G-protein-coupled receptor kinases. Trends in Pharmacological Sciences, 2000, 21, 366-367.	8.7	25
114	The role of protein kinase a (PKA) dependent phosphorylation of the secretin receptor in receptor in in internalization. Gastroenterology, 2000, 118, A309.	1.3	0
115	G protein-coupled receptor kinase (GRK) specificity of endogenous type 1 vasoactive intestinal polvpeptide (VIP) receptor expressed on the surface of HEK 293 cells. Gastroenterology, 2000, 118, A309.	1.3	0
116	Heptahelical Receptor Signaling: Beyond the G Protein Paradigm. Journal of Cell Biology, 1999, 145, 927-932.	5.2	297
117	Properties of Secretin Receptor Internalization Differ from Those of the β2-Adrenergic Receptor. Journal of Biological Chemistry, 1999, 274, 31515-31523.	3.4	102
118	Identification of NSF as a β-Arrestin1-binding Protein. Journal of Biological Chemistry, 1999, 274, 10677-10680.	3.4	129
119	G Protein-coupled Receptor Kinase 6A Phosphorylates the Na+/H+ Exchanger Regulatory Factor via a PDZ Domain-mediated Interaction. Journal of Biological Chemistry, 1999, 274, 24328-24334.	3.4	129
120	A Tyrosine-phosphorylated Protein That Binds to an Important Regulatory Region on the Cool Family of p21-activated Kinase-binding Proteins. Journal of Biological Chemistry, 1999, 274, 22393-22400.	3.4	197
121	The GRK4 Subfamily of G Protein-coupled Receptor Kinases. Journal of Biological Chemistry, 1999, 274, 29381-29389.	3.4	73
122	Muscarinic Supersensitivity and Impaired Receptor Desensitization in G Protein–Coupled Receptor Kinase 5–Deficient Mice. Neuron, 1999, 24, 1029-1036.	8.1	180
123	The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature, 1998, 392, 626-630.	27.8	566
124	Palmitoylation Increases the Kinase Activity of the G Protein-Coupled Receptor Kinase, GRK6â€. Biochemistry, 1998, 37, 16053-16059.	2.5	48
125	Â2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14082-14087.	7.1	281
126	A Role for Receptor Kinases in the Regulation of Class II G Protein-coupled Receptors. Journal of Biological Chemistry, 1998, 273, 6756-6762.	3.4	48

#	Article	IF	CITATIONS
127	A C-terminal motif found in the Â2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8496-8501.	7.1	393
128	Members of the G Protein-Coupled Receptor Kinase Family That Phosphorylate the β2-Adrenergic Receptor Facilitate Sequestrationâ€. Biochemistry, 1996, 35, 4155-4160.	2.5	88
129	Cloning, characterization, and chromosomal localization of rec1.3, a member of the G-protein-coupled receptor family highly expressed in brain. Molecular Brain Research, 1996, 42, 245-254.	2.3	37
130	Identification and Characterization of a Widely Expressed Form of Adenylyl Cyclase. Journal of Biological Chemistry, 1996, 271, 13900-13907.	3.4	173
131	Phosphatidylinositol 4,5-Bisphosphate (PIP2)-enhanced G Protein-coupled Receptor Kinase (GRK) Activity: LOCATION, STRUCTURE, AND REGULATION OF THE PIP2 BINDING SITE DISTINGUISHES THE GRK SUBFAMILIES. Journal of Biological Chemistry, 1996, 271, 24907-24913.	3.4	158
132	Characterization of the G Protein-coupled Receptor Kinase GRK4. Journal of Biological Chemistry, 1996, 271, 6403-6410.	3.4	172
133	Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8473-8477.	7.1	105
134	Protein kinases that phosphorylate activated G proteinâ€coupled receptors. FASEB Journal, 1995, 9, 175-182.	0.5	494
135	Regulation of the Uncoupling Protein Gene (Ucp) by β1, β2, and β3-Adrenergic Receptor Subtypes in Immortalized Brown Adipose Cell Lines. Journal of Biological Chemistry, 1995, 270, 10723-10732.	3.4	78
136	Rhodopsin Kinase Autophosphorylation. Journal of Biological Chemistry, 1995, 270, 15294-15298.	3.4	55
137	RhK. , 1995, , 102-104.		0
138	βARK., 1995,, 98-101.		1
139	[9] Identification of adenylyl cyclases by amplification using degenerate primers. Methods in Enzymology, 1994, 238, 116-127.	1.0	45
140	[20] Amplification of phosphatidylinositol-specific phospholipase C-β isoforms using degenerate primers. Methods in Enzymology, 1994, 238, 244-252.	1.0	1
141	Type 5 adenylyl cyclase distribution. Nature, 1993, 363, 679-679.	27.8	20
142	Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9809-9813.	7.1	181
143	Liver Adenylyl Cyclases: Structure and Regulation by cAMP-Dependent Phosphorylation. , 1992, , 325-334.		0
144	A bovine brain cDNA purported to encode calmodulin-insensitive adenylyl cyclase has extensive identity with neural cell adhesion molecules (N-CAMs). FEBS Letters, 1991, 295, 230-231.	2.8	2

#	Article	IF	CITATIONS
145	[26] Quantitative immunoblotting of G-protein subunits. Methods in Enzymology, 1991, 195, 302-315.	1.0	5
146	Adenylyl Cyclase and Its Regulation by Gs. , 1990, , 147-178.		7
147	Multiple Pathways for Glucagon-Induced Heterologous Desensitization of Liver Adenylyl Cyclase. , 1990, , 85-97.		0
148	Heterologous Desensitization of the Liver Adenylyl Cyclase: Analysis of the Role of G-Proteins*. Endocrinology, 1989, 125, 1151-1160.	2.8	33
149	Beta gamma subunits of GTP-binding proteins inhibit muscarinic receptor stimulation of phospholipase C Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8865-8869.	7.1	70
150	The Hepatic Glucagon Receptor: A Comparative Study of the Regulatory and Structural Properties*. Endocrinology, 1987, 120, 2316-2325.	2.8	24
151	Properties of an intermediate-sized androgen receptor: association with RNA. Biochemistry, 1986, 25, 6988-6995.	2.5	23