
Narendra Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6249341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 2005, 23, 22-27.	4.9	747
2	Citric acid cross-linking of starch films. Food Chemistry, 2010, 118, 702-711.	4.2	559
3	Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 2015, 33, 362-369.	4.9	469
4	UK guidelines for the management of pituitary apoplexy. Clinical Endocrinology, 2011, 74, 9-20.	1.2	323
5	Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer, 2005, 46, 5494-5500.	1.8	252
6	Potential of plant proteins for medical applications. Trends in Biotechnology, 2011, 29, 490-498.	4.9	206
7	Properties and potential applications of natural cellulose fibers from cornhusks. Green Chemistry, 2005, 7, 190.	4.6	187
8	Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomaterialia, 2010, 6, 4042-4051.	4.1	182
9	Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology, 2009, 100, 3563-3569.	4.8	168
10	Structure and Properties of Chicken Feather Barbs as Natural Protein Fibers. Journal of Polymers and the Environment, 2007, 15, 81-87.	2.4	149
11	Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation and Stability, 2008, 93, 233-241.	2.7	146
12	Hollow nanoparticles from zein for potential medical applications. Journal of Materials Chemistry, 2011, 21, 18227.	6.7	129
13	Properties of High-Quality Long Natural Cellulose Fibers from Rice Straw. Journal of Agricultural and Food Chemistry, 2006, 54, 8077-8081.	2.4	118
14	Graft Polymerization of Native Chicken Feathers for Thermoplastic Applications. Journal of Agricultural and Food Chemistry, 2011, 59, 1729-1738.	2.4	109
15	Crosslinked chitosan films with controllable properties for commercial applications. International Journal of Biological Macromolecules, 2018, 120, 1256-1264.	3.6	101
16	Waterâ€stable electrospun collagen fibers from a nonâ€toxic solvent and crosslinking system. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1237-1247.	2.1	96
17	Novel Protein Fibers from Wheat Gluten. Biomacromolecules, 2007, 8, 638-643.	2.6	89
18	Extraction and characterisation of natural cellulose fibers from Kigelia africana. Carbohydrate Polymers, 2020, 236, 115996.	5.1	87

#	Article	IF	CITATIONS
19	Alkali atalyzed low temperature wet crosslinking of plant proteins using carboxylic acids. Biotechnology Progress, 2009, 25, 139-146.	1.3	86
20	Preparation and Characterization of Long Natural Cellulose Fibers from Wheat Straw. Journal of Agricultural and Food Chemistry, 2007, 55, 8570-8575.	2.4	83
21	Properties of natural cellulose fibers from hop stems. Carbohydrate Polymers, 2009, 77, 898-902.	5.1	80
22	Natural cellulose fibers from soybean straw. Bioresource Technology, 2009, 100, 3593-3598.	4.8	80
23	Reducing environmental pollution of the textile industry using keratin as alternative sizing agent to poly(vinyl alcohol). Journal of Cleaner Production, 2014, 65, 561-567.	4.6	77
24	Reusing polyester/cotton blend fabrics for composites. Composites Part B: Engineering, 2011, 42, 763-770.	5.9	76
25	Water Hyacinth: A Unique Source for Sustainable Materials and Products. ACS Sustainable Chemistry and Engineering, 2017, 5, 4478-4490.	3.2	75
26	Preparation and properties of peanut protein films crosslinked with citric acid. Industrial Crops and Products, 2012, 39, 26-30.	2.5	74
27	Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater. Journal of Environmental Management, 2013, 125, 33-40.	3.8	72
28	An Acidic Method of Zein Extraction from DDGS. Journal of Agricultural and Food Chemistry, 2007, 55, 6279-6284.	2.4	71
29	Crosslinking electrospun poly (vinyl) alcohol fibers with citric acid to impart aqueous stability for medical applications. European Polymer Journal, 2020, 124, 109484.	2.6	71
30	Completely biodegradable soyprotein–jute biocomposites developed using water without any chemicals as plasticizer. Industrial Crops and Products, 2011, 33, 35-41.	2.5	69
31	Extraction, characterization and potential applications of cellulose in corn kernels and Distillers' dried grains with solubles (DDGS). Carbohydrate Polymers, 2009, 76, 521-527.	5.1	67
32	Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresource Technology, 2008, 99, 2449-2454.	4.8	66
33	Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications. Industrial Crops and Products, 2019, 131, 25-31.	2.5	64
34	KOH activated carbon derived from biomass-banana fibers as an efficient negative electrode in high performance asymmetric supercapacitor. Journal of Energy Chemistry, 2017, 26, 56-62.	7.1	63
35	Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Industrial Crops and Products, 2018, 112, 556-560.	2.5	63
36	Thermoplastic films from plant proteins. Journal of Applied Polymer Science, 2013, 130, 729-738.	1.3	60

3

#	Article	IF	CITATIONS
37	Non-food industrial applications of poultry feathers. Waste Management, 2015, 45, 91-107.	3.7	59
38	Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties. Composites Part B: Engineering, 2012, 43, 1658-1664.	5.9	57
39	Properties and applications of citric acid crosslinked banana fibre-wheat gluten films. Industrial Crops and Products, 2018, 124, 265-272.	2.5	56
40	Structure and Properties of Natural Cellulose Fibers Obtained from Sorghum Leaves and Stems. Journal of Agricultural and Food Chemistry, 2007, 55, 5569-5574.	2.4	54
41	Plant-Based Completely Biodegradable Printed Circuit Boards. IEEE Transactions on Electron Devices, 2016, 63, 4893-4898.	1.6	54
42	Natural cellulose fibers from switchgrass with tensile properties similar to cotton and linen. Biotechnology and Bioengineering, 2007, 97, 1021-1027.	1.7	53
43	A review on the synthesis and properties of hydroxyapatite for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 229-261.	1.9	53
44	Extraction and characterization of natural cellulose fibers from common milkweed stems. Polymer Engineering and Science, 2009, 49, 2212-2217.	1.5	52
45	Biocomposites developed using waterâ€plasticized wheat gluten as matrix and jute fibers as reinforcement. Polymer International, 2011, 60, 711-716.	1.6	52
46	Thermoplastic films from wheat proteins. Industrial Crops and Products, 2012, 35, 70-76.	2.5	50
47	Intrinsically Water-Stable Keratin Nanoparticles and Their <i>in Vivo</i> Biodistribution for Targeted Delivery. Journal of Agricultural and Food Chemistry, 2014, 62, 9145-9150.	2.4	49
48	Thermoplastic films from peanut proteins extracted from peanut meal. Industrial Crops and Products, 2013, 43, 159-164.	2.5	48
49	Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering, 2020, 27, 100991.	1.6	47
50	Biothermoplastics from hydrolyzed and citric acid Crosslinked chicken feathers. Materials Science and Engineering C, 2013, 33, 1203-1208.	3.8	45
51	Wet Cross-Linking Gliadin Fibers with Citric Acid and a Quantitative Relationship between Cross-Linking Conditions and Mechanical Properties. Journal of Agricultural and Food Chemistry, 2009, 57, 90-98.	2.4	43
52	Properties and potential medical applications of regenerated casein fibers crosslinked with citric acid. International Journal of Biological Macromolecules, 2012, 51, 37-44.	3.6	43
53	Properties of chitin and chitosan extracted from silkworm pupae and egg shells. International Journal of Biological Macromolecules, 2020, 161, 1296-1304.	3.6	43
54	Effect of Glutaraldehyde Crosslinking Conditions on the Strength and Water Stability of Wheat Gluten Fibers. Macromolecular Materials and Engineering, 2008, 293, 614-620.	1.7	40

#	Article	IF	CITATIONS
55	Bio-thermoplastics from grafted chicken feathers for potential biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 110, 51-58.	2.5	40
56	Potential of using plant proteins and chicken feathers for cotton warp sizing. Cellulose, 2013, 20, 2163-2174.	2.4	40
57	SOCIETY FOR ENDOCRINOLOGY ENDOCRINE EMERGENCY GUIDANCE: Emergency management of pituitary apoplexy in adult patients. Endocrine Connections, 2016, 5, G12-G15.	0.8	40
58	Self-crosslinked gliadin fibers with high strength and water stability for potential medical applications. Journal of Materials Science: Materials in Medicine, 2008, 19, 2055-2061.	1.7	39
59	Biofibers and biocomposites from sabai grass: A unique renewable resource. Carbohydrate Polymers, 2019, 218, 243-249.	5.1	39
60	Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Industrial Crops and Products, 2017, 100, 126-131.	2.5	38
61	A review of fibrous reinforcements of concrete. Journal of Reinforced Plastics and Composites, 2017, 36, 519-552.	1.6	36
62	Completely biodegradable banana fiber-wheat gluten composites for dielectric applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 12383-12390.	1.1	36
63	Hybrid biocomposites. Polymer Composites, 2018, 39, E30.	2.3	36
64	Preparation and properties of starch acetate fibers for potential tissue engineering applications. Biotechnology and Bioengineering, 2009, 103, 1016-1022.	1.7	34
65	Acetylation of Chicken Feathers for Thermoplastic Applications. Journal of Agricultural and Food Chemistry, 2011, 59, 10517-10523.	2.4	34
66	Wool and coir fiber reinforced gypsum ceiling tiles with enhanced stability and acoustic and thermal resistance. Journal of Building Engineering, 2021, 41, 102433.	1.6	33
67	Cellphone-Aided Attomolar Zinc Ion Detection Using Silkworm Protein-Based Nanointerface Engineering in a Plasmon-Coupled Dequenched Emission Platform. ACS Sustainable Chemistry and Engineering, 2021, 9, 14959-14974.	3.2	33
68	Antimicrobial activity of cotton fabrics treated with curcumin. Journal of Applied Polymer Science, 2013, 127, 2698-2702.	1.3	32
69	Novel Wheat Protein Films as Substrates for Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2063-2077.	1.9	31
70	Low-Temperature Wet-Cross-linking of Silk with Citric Acid. Industrial & Engineering Chemistry Research, 2011, 50, 4458-4463.	1.8	30
71	Extraction, Characterization of Components, and Potential Thermoplastic Applications of Camelina Meal Grafted with Vinyl Monomers. Journal of Agricultural and Food Chemistry, 2012, 60, 4872-4879.	2.4	30
72	Highly porous carbon from a natural cellulose fiber as high efficiency sorbent for lead in waste water. Bioresource Technology, 2017, 245, 296-299.	4.8	29

#	Article	IF	CITATIONS
73	Green synthesis of copper nanoparticles using aqueous extracts from Hyptis suaveolens (L.). Materials Chemistry and Physics, 2022, 280, 125795.	2.0	29
74	Bleaching of Kenaf and Cornhusk Fibers. Industrial & Engineering Chemistry Research, 2007, 46, 1452-1458.	1.8	28
75	Structure and properties of cocoons and silk fibers produced by Hyalophora cecropia. Journal of Materials Science, 2010, 45, 4414-4421.	1.7	28
76	Thermoplastic films from cyanoethylated chicken feathers. Materials Science and Engineering C, 2011, 31, 1706-1710.	3.8	28
77	Nonâ€ŧraditional lightweight polypropylene composites reinforced with milkweed floss. Polymer International, 2010, 59, 884-890.	1.6	27
78	Novel green composites using zein as matrix and jute fibers as reinforcement. Biomass and Bioenergy, 2011, 35, 3496-3503.	2.9	27
79	Soy proteins as environmentally friendly sizing agents to replace poly(vinyl alcohol). Environmental Science and Pollution Research, 2013, 20, 6085-6095.	2.7	26
80	Development of wheat glutenin nanoparticles and their biodistribution in mice. Journal of Biomedical Materials Research - Part A, 2015, 103, 1653-1658.	2.1	25
81	Nontraditional Biofibers for A New Textile Industry. Journal of Biobased Materials and Bioenergy, 2007, 1, 177-190.	0.1	25
82	Morphology and tensile properties of silk fibers produced by uncommon Saturniidae. International Journal of Biological Macromolecules, 2010, 46, 419-424.	3.6	24
83	Biodegradable Composites Containing Chicken Feathers as Matrix and Jute Fibers as Reinforcement. Journal of Polymers and the Environment, 2014, 22, 310-317.	2.4	24
84	Biomimetic approaches for tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1667-1685.	1.9	24
85	Effect of Lignin on the Heat and Light Resistance of Lignocellulosic Fibers. Macromolecular Materials and Engineering, 2007, 292, 458-466.	1.7	23
86	Lightâ€weight polypropylene composites reinforced with whole chicken feathers. Journal of Applied Polymer Science, 2010, 116, 3668-3675.	1.3	23
87	Properties and Applications of Nanoparticles from Plant Proteins. Materials, 2021, 14, 3607.	1.3	23
88	Soyprotein fibers with high strength and water stability for potential medical applications. Biotechnology Progress, 2009, 25, 1796-1802.	1.3	22
89	Remediation of Environmental Pollution by Substituting Poly(vinyl alcohol) with Biodegradable Warp Size from Wheat Gluten. Environmental Science & Technology, 2013, 47, 4505-4511.	4.6	22
90	Effect of Structures and Concentrations of Softeners on the Performance Properties and Durability to Laundering of Cotton Fabrics. Industrial & Engineering Chemistry Research, 2008, 47, 2502-2510.	1.8	21

#	Article	IF	CITATIONS
91	Corn Distillers Dried Grains as Sustainable and Environmentally Friendly Warp Sizing Agents. ACS Sustainable Chemistry and Engineering, 2013, 1, 1564-1571.	3.2	21
92	Engineering Sustainable Waste Wool Biocomposites with High Flame Resistance and Noise Insulation for Green Building and Automotive Applications. Journal of Natural Fibers, 2021, 18, 1871-1881.	1.7	21
93	Integrated Photo-Plasmonic coupling of bioinspired Sharp-Edged silver Nano-particles with Nano-films in extended cavity functional interface for Cellphone-aided femtomolar sensing. Materials Letters, 2022, 316, 132025.	1.3	21
94	A new crosslinked protein fiber from gliadin and the effect of crosslinking parameters on its mechanical properties and water stability. Polymer International, 2008, 57, 1174-1181.	1.6	20
95	A sustainable low temperature yarn reinforcing process to reduce water and energy consumptions and pollution in the textile industry. Journal of Cleaner Production, 2019, 210, 646-652.	4.6	20
96	Cytocompatible and waterâ€stable camelina protein films for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 729-736.	1.6	19
97	Effects of Monomers and Homopolymer Contents on the Dry and Wet Tensile Properties of Starch Films Grafted with Various Methacrylates. Journal of Agricultural and Food Chemistry, 2014, 62, 4668-4676.	2.4	19
98	Effect of pH on the physicochemical properties of starch films. Journal of Applied Polymer Science, 2020, 137, 48563.	1.3	19
99	Thermoplastics from acetylated zein-and-oil-free corn distillers dried grains with solubles. Biomass and Bioenergy, 2011, 35, 884-892.	2.9	18
100	Tensile Properties of Thermoplastic Feather Films Grafted with Different Methacrylates. ACS Sustainable Chemistry and Engineering, 2014, 2, 1849-1856.	3.2	18
101	Structure and Properties of Cocoons and Silk Fibers Produced by Attacus atlas. Journal of Polymers and the Environment, 2013, 21, 16-23.	2.4	17
102	Dehulled coffee husk-based biocomposites for green building materials. Journal of Thermoplastic Composite Materials, 2021, 34, 1623-1638.	2.6	17
103	Developing Water Stable Gliadin Films Without Using Crosslinking Agents. Journal of Polymers and the Environment, 2010, 18, 277-283.	2.4	16
104	Acetylation of corn distillers dried grains. Applied Energy, 2011, 88, 1664-1670.	5.1	16
105	Tensile and Flexural Properties of Polypropylene Composites Reinforced with Raw Bagasse. Sugar Tech, 2018, 20, 454-463.	0.9	16
106	A review on dielectric properties of biofiber-based composites. Advanced Composites and Hybrid Materials, 2018, 1, 635-648.	9.9	16
107	Hybrid biocomposites with high thermal and noise insulation from discarded wool, poultry feathers, and their blends. Construction and Building Materials, 2022, 345, 128324.	3.2	16
108	Unique naturalâ€protein hollowâ€nanofiber membranes produced by weaver ants for medical applications. Biotechnology and Bioengineering, 2011, 108, 1726-1733.	1.7	15

#	Article	IF	CITATIONS
109	Litter to Leaf: The Unexplored Potential of Silk Byproducts. Trends in Biotechnology, 2021, 39, 706-718.	4.9	15
110	Development and Characterization of Thermoplastic Films from Sorghum Distillers Dried Grains Grafted with Various Methacrylates. Journal of Agricultural and Food Chemistry, 2014, 62, 2406-2411.	2.4	14
111	Biocompatible Natural Silk Fibers from <l>Argema</l> <l>mittrei</l> . Journal of Biobased Materials and Bioenergy, 2012, 6, 558-563.	0.1	14
112	Synthesis and Characterization of Highly Flexible Thermoplastic Films from Cyanoethylated Corn Distillers Dried Grains with Solubles. Journal of Agricultural and Food Chemistry, 2011, 59, 1723-1728.	2.4	13
113	Utilizing discarded plastic bags as matrix material for composites reinforced with chicken feathers. Journal of Applied Polymer Science, 2013, 130, 307-312.	1.3	13
114	Oxygen enriched network-type carbon spheres for multipurpose water purification applications. Environmental Technology and Innovation, 2018, 12, 160-171.	3.0	13
115	Superior cycle stability performance of a symmetric coin cell fabricated using KOH activated bio-char derived from agricultural waste–ÂCajanus cajan stems. Journal of Environmental Chemical Engineering, 2021, 9, 106525.	3.3	13
116	Structure and properties of ultrafine silk fibers produced by Theriodopteryx ephemeraeformis. Journal of Materials Science, 2010, 45, 6617-6622.	1.7	12
117	Investigation of the Structure and Properties of Silk Fibers Produced by Actias lunas. Journal of Polymers and the Environment, 2012, 20, 659-664.	2.4	12
118	Characterization of crosslinked Macrotyloma uniflorum(Horsegram) protein films for packaging and medical applications. Polymer Testing, 2020, 91, 106794.	2.3	12
119	Biothermoplastics from soyproteins by steaming. Industrial Crops and Products, 2012, 36, 116-121.	2.5	11
120	Influence of Alkali Treatment on the Physicochemical and Mechanical Properties of Starch Chitosan Films. Starch/Staerke, 2019, 71, 1800084.	1.1	10
121	Antimicrobial Natural Cellulose Fibers from <i>Hyptis suaveolens</i> for Potential Biomedical and Textiles Applications. Journal of Natural Fibers, 2021, 18, 867-876.	1.7	10
122	Grafting soyprotein isolates with various methacrylates for thermoplastic applications. Industrial Crops and Products, 2014, 60, 168-176.	2.5	9
123	Development, characterization and evaluation of the biocompatibility of catechol crosslinked horsegram protein films. European Polymer Journal, 2020, 134, 109800.	2.6	8
124	Dyeing Natural Cellulose Fibers from Cornhusks: A Comparative Study with Cotton Fibers. Industrial & Engineering Chemistry Research, 2011, 50, 5642-5650.	1.8	7
125	A review on completely biodegradable composites developed using soy-based matrices. Journal of Reinforced Plastics and Composites, 2015, 34, 1457-1475.	1.6	7
126	Enzyme-modified casein fibers and their potential application in drug delivery. Fibers and Polymers, 2017, 18, 900-906.	1.1	7

#	Article	IF	CITATIONS
127	Acetylation of Castor Meal and Castor Proteins for Thermoplastic Applications. Journal of Polymers and the Environment, 2018, 26, 1371-1377.	2.4	7
128	Three-dimensional rope-like and cloud-like nanofibrous scaffolds facilitating in-depth cell infiltration developed using a highly conductive electrospinning system. Nanoscale, 2020, 12, 16690-16696.	2.8	7
129	Effect of platelet-poor plasma additive on the formation of biocompatible calcium phosphates. Materials Today Communications, 2021, 27, 102224.	0.9	7
130	Groundnut shell and coir reinforced hybrid bio composites as alternative to gypsum ceiling tiles. Journal of Building Engineering, 2022, 57, 104892.	1.6	7
131	Under-utilized germinated horse gram (Macrotyloma uniflorum) protein – Extraction, process optimization, characterization and its use in cookies fortification. LWT - Food Science and Technology, 2022, 160, 113276.	2.5	6
132	Using hop bines as reinforcements for lightweight polypropylene composites. Journal of Applied Polymer Science, 2010, 116, 2366-2373.	1.3	5
133	Investigation of the properties and potential medical applications of natural silk fibers produced by <i>Eupackardia calleta</i> . Journal of Biomaterials Science, Polymer Edition, 2013, 24, 460-469.	1.9	5
134	Alkali Treated 3D Chitosan Scaffolds with Enhanced Strength and Stability. Journal of Polymers and the Environment, 2021, 29, 3302-3310.	2.4	5
135	Biocomposites with high strength and thermal and noise insulation by reinforcing polypropylene with stems and fibers from Arundinaria gigantea. Polymer Composites, 0, , .	2.3	5
136	Superior Technique for the Production of Agarose Dressing Containing Sericin and Its Wound Healing Property. Polymers, 2021, 13, 3370.	2.0	5
137	Properties and potential medical applications of silk fibers produced by Rothischildia lebeau. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 820-830.	1.9	4
138	Sustained Local Delivery of Diclofenac from Three-Dimensional Ultrafine Fibrous Protein Scaffolds with Ultrahigh Drug Loading Capacity. Nanomaterials, 2019, 9, 918.	1.9	4
139	Biobased insulating panels from mulberry stems. Journal of Thermoplastic Composite Materials, 2023, 36, 453-472.	2.6	4
140	Sustainable bioproducts through thermoplastic processing of wheat gluten and its blends. Journal of Thermoplastic Composite Materials, 2023, 36, 1775-1806.	2.6	4
141	Effects of Printhouse Humidity and Temperature on Quality of Ink Jet Printed Cotton, Silk, and Nylon Fabrics. Journal of Imaging Science and Technology, 2006, 50, 181.	0.3	3
142	Potential and Properties of Plant Proteins for Tissue Engineering Applications. IFMBE Proceedings, 2009, , 1282-1284.	0.2	3
143	Self-assembly of covalently bonded nano-silicates with controllable modulus and thermal stability. Composites Science and Technology, 2013, 87, 118-125.	3.8	3
144	Bioproducts from wheat gluten with high strength and aqueous stability using cashew nut shell liquid as plasticizer. Journal of Applied Polymer Science, 2018, 135, 46719.	1.3	3

NDRA	Dee	NO.4
A SI LIN		1111

0

#	Article	lF	CITATIONS
145	Green Energy from Discarded Wool and Fish Scales. Waste and Biomass Valorization, 2021, 12, 6835-6845.	1.8	3
146	Natural Cellulose Fibers from Corn Stover. , 2015, , 5-8.		3
147	Fibers from Feather Keratin. , 2015, , 251-252.		3
148	Development and Characterization of Thermoplastics from Corn Distillers Grains Grafted with Various Methacrylates. Industrial & Engineering Chemistry Research, 2014, 53, 13963-13970.	1.8	2
149	Non-mulberry Silk Fibers. , 2015, , 165-174.		2
150	Effect of Alkali Treatment on the Structure and Properties of Natural Cellulose Fibers from Areca Cathechu Shells. Journal of Natural Fibers, 0, , 1-11.	1.7	2
151	EXTRACTION AND CHARACTERIZATION OF NANOCELLULOSE FROM PONGAMIA PINNATA OIL MEAL. Cellulose Chemistry and Technology, 2022, 56, 29-37.	0.5	2
152	A study on the potential of using plant proteins as electrolytes in a biochemical cell. Environmental Progress and Sustainable Energy, 2018, 37, 961-967.	1.3	1
153	Extraction and Characterization of Proteins from Castor Oil Meal for Medical Applications. Polymer Science - Series A, 2021, 63, 400-411.	0.4	1
154	Epoxide Cross-Linked and Lysine-Blocked Zein Ultrafine Fibrous Scaffolds with Prominent Wet Stability and Cytocompatibility. ACS Applied Polymer Materials, 2021, 3, 3855-3866.	2.0	1
155	Extraction and characterisation of bioactive proteins from <i>Pongamia pinnata</i> and their conversion into bioproducts for food packaging applications. Journal of Bioactive and Compatible Polymers, 2021, 36, 365-379.	0.8	1
156	Structure and Properties of Silk Fibers Produced by <i>Antheraea polyphemus</i> . Journal of Biobased Materials and Bioenergy, 2010, 4, 367-371.	0.1	1
157	Poultry Feathers as Natural Protein Fibers. , 2015, , 205-207.		1
158	Fibers from Cotton Stalks. , 2015, , 13-14.		1
159	Residues from <i>Cajanus cajan</i> Plant Provide Natural Cellulose Fibers Similar to Flax. Journal of Natural Fibers, 2022, 19, 14539-14547.	1.7	1
160	Biothermoplastics from Coproducts of Biofuel Production. ACS Symposium Series, 2014, , 89-102.	0.5	0
161	Composites Reinforced with Hollow Natural Organic Fibrous Structures. , 2017, , 29-58.		0

162 Sources and classification of silk. , 2020, , 1-12.

#	Article	IF	CITATIONS
163	Structure and properties of silk fibers. , 2020, , 13-47.		0
164	Natural Cellulose Fibers from the Stems of Chrysanthemum Indicum. Journal of Natural Fibers, 0, , 1-12.	1.7	0
165	Regenerated Plant Protein Fibers. , 2015, , 245-249.		0
166	Electrospun Fibers from Proteins. , 2015, , 287-295.		0