Markus Lunzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6248935/publications.pdf

Version: 2024-02-01

759233 888059 17 504 12 17 citations h-index g-index papers 20 20 20 837 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	Dynamic Coordination Chemistry Enables Free Directional Printing of Biopolymer Hydrogel. Chemistry of Materials, 2017, 29, 5816-5823.	6.7	119
2	A Modular Approach to Sensitized Twoâ€Photon Patterning of Photodegradable Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 15122-15127.	13.8	68
3	Metalloâ€Supramolecular Gels that are Photocleavable with Visible and Nearâ€Infrared Irradiation. Angewandte Chemie - International Edition, 2017, 56, 15857-15860.	13.8	62
4	Specific Monitoring of Excited-State Symmetry Breaking by Femtosecond Broadband Fluorescence Upconversion Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 5878-5883.	4.6	58
5	Solvent tuning of photochemistry upon excited-state symmetry breaking. Nature Communications, 2020, 11, 1925.	12.8	54
6	Screening of two-photon activated photodynamic therapy sensitizers using a 3D osteosarcoma model. Analyst, The, 2019, 144, 3056-3063.	3 . 5	22
7	A Versatile Oneâ€Pot Access to Cyanoarenes from <i>ortho</i> ―and <i>para</i> êQuinones: Paving the Way for Cyanated Functional Materials. Chemistry - A European Journal, 2016, 22, 5173-5180.	3.3	18
8	Towards efficient initiators for two-photon induced polymerization: fine tuning of the donor/acceptor properties. Molecular Systems Design and Engineering, 2019, 4, 437-448.	3.4	16
9	A Modular Approach to Sensitized Twoâ€Photon Patterning of Photodegradable Hydrogels. Angewandte Chemie, 2018, 130, 15342-15347.	2.0	15
10	Beyond the Threshold: A Study of Chalcogenophene-Based Two-Photon Initiators. Chemistry of Materials, 2022, 34, 3042-3052.	6.7	14
11	Durch sichtbares Licht und Nahinfrarotstrahlung abbaubare supramolekulare Metalloâ€Gele. Angewandte Chemie, 2017, 129, 16071-16075.	2.0	12
12	Fully automated z-scan setup based on a tunable fs-oscillator. Optical Materials Express, 2019, 9, 3567.	3.0	12
13	High Resolution Patterning of an Organic–Inorganic Photoresin for the Fabrication of Platinum Microstructures. Advanced Materials, 2021, 33, e2101992.	21.0	11
14	Facile Synthesis of Cyanoarenes from Quinones by Reductive ÂAromatization of Cyanohydrin Intermediates. Synlett, 2015, 26, 950-952.	1.8	10
15	Synthesis of Fast Curing, Waterâ€Resistant and Photopolymerizable Glass for Recording of Holographic Structures by One―and Twoâ€Photon Lithography. Advanced Optical Materials, 2022, 10, 2102089.	7.3	8
16	A disulfide-based linker for thiol–norbornene conjugation: formation and cleavage of hydrogels by the use of light. Polymer Chemistry, 2022, 13, 1158-1168.	3.9	4
17	A Versatile Oneâ€Pot Access to Cyanoarenes from <i>ortho</i> ―and <i>para</i> êQuinones: Paving the Way for Cyanated Functional Materials. Chemistry - A European Journal, 2016, 22, 5025-5025.	3.3	0