Pujiang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6248487/publications.pdf Version: 2024-02-01

PHILANC SHI

#	Article	IF	CITATIONS
1	Bone induction at physiological doses of BMP through localization by clay nanoparticle gels. Biomaterials, 2016, 99, 16-23.	5.7	73
2	Hydroxyapatite/polyurethane scaffold incorporated with drugâ€loaded ethyl cellulose microspheres for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 95B, 36-46.	1.6	57
3	Release and cellular acceptance of multiple drugs loaded silk fibroin particles. International Journal of Pharmaceutics, 2011, 420, 282-289.	2.6	53
4	Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration. Biomaterials, 2013, 34, 5947-5957.	5.7	50
5	Silk Fibroin-Based Complex Particles with Bioactive Encrustation for Bone Morphogenetic Protein 2 Delivery. Biomacromolecules, 2013, 14, 4465-4474.	2.6	43
6	Investigation of cell viability and morphology in 3D bioâ€printed alginate constructs with tunable stiffness. Journal of Biomedical Materials Research - Part A, 2017, 105, 1009-1018.	2.1	40
7	Improved properties of incorporated chitosan film with ethyl cellulose microspheres for controlled release. International Journal of Pharmaceutics, 2009, 375, 67-74.	2.6	39
8	Parametric analysis of shape changes of alginate beads. Powder Technology, 2011, 210, 60-66.	2.1	38
9	Selfâ€Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments. Advanced Healthcare Materials, 2018, 7, e1800331.	3.9	38
10	Self-assembled silk fibroin particles: Tunable size and appearance. Powder Technology, 2012, 215-216, 85-90.	2.1	33
11	Hybrid three-dimensional (3D) bioprinting of retina equivalent for ocular researchÂ. International Journal of Bioprinting, 2017, 3, 138.	1.7	33
12	The study of tri-phasic interactions in nano-hydroxyapatite/konjac glucomannan/chitosan composite. Journal of Materials Science, 2007, 42, 2591-2597.	1.7	32
13	A bilayer photoreceptor-retinal tissue model with gradient cell density design: A study of microvalve-based bioprinting. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1297-1306.	1.3	31
14	Preparation and characterization of aliphatic polyurethane and hydroxyapatite composite scaffold. Journal of Applied Polymer Science, 2009, 112, 2968-2975.	1.3	30
15	Fabrication and property of chitosan film carrying ethyl cellulose microspheres. Carbohydrate Polymers, 2008, 72, 490-499.	5.1	28
16	Direct and Labelâ€Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry. Small, 2021, 17, e2007500.	5.2	28
17	Gentamicinâ€impregnated chitosan/nanohydroxyapatite/ethyl cellulose microspheres granules for chronic osteomyelitis therapy. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1020-1031.	2.1	24
18	Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering. Biomedical Materials (Bristol), 2014, 9, 065002.	1.7	24

PUJIANG SHI

#	Article	IF	CITATIONS
19	Efficacy of BMPâ€⊋ Delivery from Natural Protein Based Polymeric Particles. Advanced Healthcare Materials, 2013, 2, 934-939.	3.9	23
20	<i>In vitro</i> generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 284-293.	1.3	22
21	Tissue engineering of retina and Bruch's membrane: a review of cells, materials and processes. British Journal of Ophthalmology, 2018, 102, 1182-1187.	2.1	17
22	Clarifying the in-situ cytotoxic potential of electronic waste plastics. Chemosphere, 2021, 269, 128719.	4.2	17
23	Inflammation Increases Susceptibility of Human Small Airway Epithelial Cells to Pneumonic Nanotoxicity. Small, 2020, 16, 2000963.	5.2	15
24	A Moldable Putty Containing Silk Fibroin Yolk Shell Particles for Improved Hemostasis and Bone Repair. Advanced Healthcare Materials, 2015, 4, 432-445.	3.9	11
25	Direct reuse of electronic plastic scraps from computer monitor and keyboard to direct stem cell growth and differentiation. Science of the Total Environment, 2022, 807, 151085.	3.9	7
26	Elucidating the Sizeâ€Dependency of In Vitro Digested Polystyrene Microplastics on Human Intestinal Cells Health and Function. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
27	Enhancing Analysis of Cells and Proteins by Fluorescence Imaging on Silk-Based Biomaterials: Modulating the Autofluorescence of Silk. Tissue Engineering - Part C: Methods, 2015, 21, 218-228.	1.1	6
28	Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers. Nanoscale, 2017, 9, 14520-14532.	2.8	6
29	Machine learning-assisted optimization of TBBPA-bis-(2,3-dibromopropyl ether) extraction process from ABS polymer. Chemosphere, 2022, 287, 132128.	4.2	6
30	Advancement of lung tissue engineering: an overview. International Journal of Biomedical Engineering and Technology, 2011, 5, 195.	0.2	5
31	Bioactive Ceramic/Polyamide 6 Scaffold for Bone Regeneration: <i>In vitro</i> and <i>in vivo</i> Evaluation. Polymer-Plastics Technology and Engineering, 2011, 50, 1367-1374.	1.9	4
32	Microfluidics: Direct and Labelâ€Free Cell Status Monitoring of Spheroids and Microcarriers Using Microfluidic Impedance Cytometry (Small 21/2021). Small, 2021, 17, 2170101.	5.2	0