
Steven W Lane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6247957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PLCG1 is required for AML1-ETO leukemia stem cell self-renewal. Blood, 2022, 139, 1080-1097.	1.4	16
2	Better the cure you know: why patients with AML ≥60 years of age should be offered early allogeneic stem cell transplantation. Blood Advances, 2022, 6, 1619-1622.	5.2	4
3	Oral Maintenance Therapy to Improve Survival in Older Patients With AML. , 2022, 19, .		0
4	Epigenetic Activation of Plasmacytoid DCs Drives IFNAR-Dependent Therapeutic Differentiation of AML. Cancer Discovery, 2022, 12, 1560-1579.	9.4	13
5	Panel-based gene testing in myelodysplastic/myeloproliferative neoplasm- overlap syndromes: Australasian Leukaemia and Lymphoma Group (ALLG) consensus statement. Pathology, 2022, , .	0.6	2
6	Eltrombopag in Frontline Therapy for Severe Aplastic Anemia: A RACE Against Time. , 2022, 19, .		0
7	Intravascular large B ell lymphoma presenting with extensive pulmonary embolism. British Journal of Haematology, 2021, 192, 677-677.	2.5	0
8	Myeloid somatic mutation panel testing in myeloproliferative neoplasms. Pathology, 2021, 53, 339-348.	0.6	13
9	IFN-λ therapy prevents severe gastrointestinal graft-versus-host disease. Blood, 2021, 138, 722-737.	1.4	21
10	Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood, 2021, 137, 2721-2735.	1.4	75
11	Optimizing DNA hypomethylating therapy in acute myeloid leukemia and myelodysplastic syndromes. BioEssays, 2021, 43, 2100125.	2.5	4
12	Protecting Our Most Vulnerable: Vaccine Responses in Patients With Blood Cancers. , 2021, 18, .		0
13	A knockout combination for MPN stem cells. Journal of Experimental Medicine, 2021, 218, .	8.5	0
14	Targeting Control of Cell Cycle Enhances the Activity of Conventional Chemotherapy in Chemotherapy-Resistant Acute Myeloid Leukemia. Blood, 2021, 138, 2241-2241.	1.4	0
15	A Phase-Ib/II Clinical Evaluation of Ponatinib in Combination with Azacitidine in FLT3-ITD and CBL-Mutant Acute Myeloid Leukemia (PON-AZA study). Blood, 2021, 138, 2350-2350.	1.4	4
16	Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations. Leukemia, 2020, 34, 1075-1089.	7.2	29
17	Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nature Immunology, 2020, 21, 1597-1610.	14.5	43
18	Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature, 2020, 588, 157-163.	27.8	90

#	Article	IF	CITATIONS
19	Murine Models of Myelofibrosis. Cancers, 2020, 12, 2381.	3.7	14
20	MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells, 2020, 9, 1901.	4.1	27
21	Managing haematology and oncology patients during the <scp>COVID</scp> â€19 pandemic: interim consensus guidance. Medical Journal of Australia, 2020, 212, 481-489.	1.7	107
22	Hematopoietic stem and progenitor cell-restricted Cdx2 expression induces transformation to myelodysplasia and acute leukemia. Nature Communications, 2020, 11, 3021.	12.8	15
23	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	6.4	34
24	Gut Microbiome Diversity Influences Transplant Risk. , 2020, 17, .		0
25	Menin Inhibitors: A New Hope in MLL-Rearranged Leukemia?. , 2020, 17, .		Ο
26	Mapping Functional Susceptibilities in AML. , 2020, 17, .		0
27	Taking the Brakes Off Programmed Cell Death: Will It Work for AML in Older Patients?. , 2020, 17, .		Ο
28	Acute promyelocytic leukaemia with marked symptomatic hyperleucocytosis. British Journal of Haematology, 2019, 186, 649-649.	2.5	0
29	Inflammation in del(20q): a MST opportunity?. Blood, 2019, 134, 1685-1686.	1.4	0
30	Attenuated Acceleration to Leukemia after Ezh2ÂLoss in Nup98â€HoxD13 (NHD13) Myelodysplastic Syndrome. HemaSphere, 2019, 3, e277.	2.7	2
31	Recommendations for the use of pegylated interferonâ€î± in the treatment of classical myeloproliferative neoplasms. Internal Medicine Journal, 2019, 49, 948-954.	0.8	7
32	Unraveling the Loops of Drug Resistance in ALL. , 2019, 16, .		0
33	Interferon in Low-risk Polycythemia Vera: Does Better Tolerability Allow for Earlier Intervention?. , 2019, 16, .		Ο
34	TARGETing Genetic Drivers of MPN at Single Cell Resolution. , 2019, 16, .		0
35	Beating AML: Know Your Enemy. , 2019, 16, .		0
36	Piecing Together the Bone Marrow Niche. , 2019, 16, .		0

#	Article	IF	CITATIONS
37	Loss of Phospholipase C Gamma 1 (PLCG1) Impairs AML1-ETO Induced Leukemia Stem Cell Self-Renewal. Blood, 2019, 134, 531-531.	1.4	0
38	Oncogenic JAK2 ^{V617F} causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Science Translational Medicine, 2018, 10, .	12.4	166
39	Flt-3L Expansion of Recipient CD8α+ Dendritic Cells Deletes Alloreactive Donor T Cells and Represents an Alternative to Posttransplant Cyclophosphamide for the Prevention of GVHD. Clinical Cancer Research, 2018, 24, 1604-1616.	7.0	20
40	IFN Regulatory Factor 3 Balances Th1 and T Follicular Helper Immunity during Nonlethal Blood-Stage <i>Plasmodium</i> Infection. Journal of Immunology, 2018, 200, 1443-1456.	0.8	31
41	Conventional dendritic cells are required for the cross-presentation of leukemia-specific antigen in a model of AML relapse post-BMT. Bone Marrow Transplantation, 2018, 53, 800-803.	2.4	4
42	The impact of age, NPM1mut, and FLT3ITD allelic ratio in patients with acute myeloid leukemia. Blood, 2018, 131, 1148-1153.	1.4	53
43	Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation. Blood, 2018, 132, 2707-2721.	1.4	56
44	Recipient mucosal-associated invariant T cells control GVHD within the colon. Journal of Clinical Investigation, 2018, 128, 1919-1936.	8.2	78
45	CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Journal of Clinical Investigation, 2018, 128, 2613-2625.	8.2	91
46	Small-Molecule Inhibition of PRMT5 Induces Translational Stress and p53 in JAK2V617F Mutant Myeloproliferative Neoplasms. Blood, 2018, 132, 53-53.	1.4	2
47	Oncogenic-Drivers Dictate Immune Responses to Control Disease Progression in Acute Myeloid Leukaemia. Blood, 2018, 132, 904-904.	1.4	0
48	Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress. Blood, 2017, 129, 2479-2492.	1.4	18
49	Acute myeloid leukemia stem cell function is preserved in the absence of autophagy. Haematologica, 2017, 102, e344-e347.	3.5	8
50	Hacking the stem cell niche. Blood, 2017, 129, 2951-2952.	1.4	2
51	GVHD prevents NK-cell–dependent leukemia and virus-specific innate immunity. Blood, 2017, 129, 630-642.	1.4	32
52	Integrated Molecular Analysis Identifies Replicative Stress As Sensitizer to Imetelstat Therapy in AML. Blood, 2017, 130, 798-798.	1.4	2
53	Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight, 2016, 1, e86850.	5.0	43
54	Global prevalence of carbapenem resistance in neutropenic patients and association with mortality and carbapenem use: systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2016, 72, dkw459.	3.0	57

#	Article	IF	CITATIONS
55	Jak2V617F driven myeloproliferative neoplasm occurs independently of interleukin-3 receptor beta common signaling. Haematologica, 2016, 101, e77-e80.	3.5	5
56	Harnessing the immune system in acute myeloid leukaemia. Critical Reviews in Oncology/Hematology, 2016, 103, 62-77.	4.4	90
57	Telomerase in hematologic malignancies. Current Opinion in Hematology, 2016, 23, 346-353.	2.5	12
58	Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling. Genomics Data, 2016, 7, 275-280.	1.3	1
59	Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects. Blood, 2015, 126, 1609-1620.	1.4	98
60	Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature, 2015, 520, 549-552.	27.8	498
61	<i>Ssb2/Nabp1</i> is dispensable for thymic maturation, male fertility, and DNA repair in mice. FASEB Journal, 2015, 29, 3326-3334.	0.5	11
62	Autophagy is required for stem cell mobilization by G-CSF. Blood, 2015, 125, 2933-2936.	1.4	36
63	BET inhibitor resistance emerges from leukaemia stem cells. Nature, 2015, 525, 538-542.	27.8	441
64	Epo-induced erythroid maturation is dependent on Plcγ1 signaling. Cell Death and Differentiation, 2015, 22, 974-985.	11.2	30
65	EphA2 Is a Therapy Target in EphA2-Positive Leukemias but Is Not Essential for Normal Hematopoiesis or Leukemia. PLoS ONE, 2015, 10, e0130692.	2.5	20
66	Cdx2 Cooperates with Flt3-ITD to Induce Acute Myeloid Leukaemia in Mice. Blood, 2015, 126, 557-557.	1.4	0
67	Recipient CD8+ DC Delete Alloreactive Donor CTL and Promote Leukemic Relapse after Allogeneic BMT. Blood, 2015, 126, 4279-4279.	1.4	Ο
68	Telomerase Inhibition Effectively Targets Mouse and Human AML Stem Cells and Delays Relapse following Chemotherapy. Cell Stem Cell, 2014, 15, 775-790.	11.1	74
69	Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32, 795-803.	17.5	492
70	Hit the spleen, JAK!. Blood, 2014, 124, 2898-2900.	1.4	3
71	Inhibition of Telomerase with Imetelstat Is Detrimental to Leukemia Stem Cells in Acute Myeloid Leukemia (AML). Blood, 2014, 124, 2322-2322.	1.4	1
72	Aberrant Activation of Epidermal Growth Factor Receptor in MPN May Respond to the Kinase Inhibitor Gefitinib. Blood, 2014, 124, 1882-1882.	1.4	0

#	Article	IF	CITATIONS
73	Altered HSC Metabolism in Response to Stress Leads to De Novo dna Damage and Cellular Attrition. Blood, 2014, 124, 255-255.	1.4	0
74	Deciphering Hematopoietic Stem Cells in Their Niches: A Critical Appraisal of Genetic Models, Lineage Tracing, and Imaging Strategies. Cell Stem Cell, 2013, 13, 520-533.	11.1	148
75	Induced Regulatory T Cells Promote Tolerance When Stabilized by Rapamycin and IL-2 In Vivo. Journal of Immunology, 2013, 191, 5291-5303.	0.8	101
76	The Rac GTPase effector p21-activated kinase is essential for hematopoietic stem/progenitor cell migration and engraftment. Blood, 2013, 121, 2474-2482.	1.4	31
77	Tolerance induction with gene-modified stem cells and immune-preserving conditioning in primed mice: restricting antigen to differentiated antigen-presenting cells permits efficacy. Blood, 2013, 121, 1049-1058.	1.4	15
78	The cell fate determinant Llgl1 influences HSC fitness and prognosis in AML. Journal of Experimental Medicine, 2013, 210, 15-22.	8.5	47
79	Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera. Blood, 2013, 121, 3692-3702.	1.4	140
80	CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARÎ ³ signaling. Journal of Clinical Investigation, 2013, 123, 299-314.	8.2	47
81	Autophagy Is Required For Long-Term Hematopoietic Stem Cell (HSC) Function and G-CSF-Induced HSC Mobilization. Blood, 2013, 122, 892-892.	1.4	1
82	Jak2V617F myeloproliferative neoplasm stem cells and interferon-alpha. Oncotarget, 2013, 4, 500-501.	1.8	7
83	HSC Exit From Dormancy Provokes De Novo DNA Damage, Leading To Bone Marrow Failure If Unresolved By The Fanconi Anemia Pathway. Blood, 2013, 122, 799-799.	1.4	0
84	Inhibition Of Telomerase Is a Novel and Effective Therapy In MLL-Rearranged Acute Myeloid Leukemia (AML). Blood, 2013, 122, 2887-2887.	1.4	0
85	IL3-Receptor Signaling Is Dispensable For The Generation and Maintenance Of Jak2V617F-Induced		

#	Article	IF	CITATIONS
91	Genetic and Pharmacologic Inhibition of \hat{l}^2 -Catenin Targets Imatinib-Resistant Leukemia Stem Cells in CML. Cell Stem Cell, 2012, 10, 412-424.	11.1	209
92	mTOR Complex 1 Plays Critical Roles in Hematopoiesis and Pten-Loss-Evoked Leukemogenesis. Cell Stem Cell, 2012, 11, 429-439.	11.1	172
93	WT1 expression as a marker of minimal residual disease predicts outcome in acute myeloid leukemia when measured post-consolidation. Leukemia Research, 2012, 36, 453-458.	0.8	26
94	Leukemia Stem Cells. , 2012, , 85-103.		0
95	Depletion of Jak2V617F MPN Stem Cells by IFNα in a Murine Model of Polycythemia Vera. Blood, 2012, 120, 806-806.	1.4	0
96	AKT/FOXO Signaling Enforces Reversible Differentiation Blockade in Myeloid Leukemias. Cell, 2011, 146, 697-708.	28.9	232
97	Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood, 2011, 118, 2849-2856.	1.4	139
98	Evaluating Clonal Dominance in a Murine Knock-in Model of Jak2V617F MPN. Blood, 2011, 118, 614-614.	1.4	1
99	Mtor Complex 1 Plays Critical Roles in Hematopoiesis and Pten-Loss-Evoked Leukemogenesis. Blood, 2011, 118, 391-391.	1.4	0
100	Myeloid Leukemogenesis Driven by Aberrant CDX2 Expression Involves Transcriptional Repression of KLF4 and Deregulated PPARÎ ³ Signaling. Blood, 2011, 118, 1355-1355.	1.4	0
101	The Apcmin mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood, 2010, 115, 3489-3497.	1.4	88
102	Leukemia stem cells. Seminars in Cancer Biology, 2010, 20, 71-76.	9.6	65
103	Physiological Jak2V617F Expression Causes a Lethal Myeloproliferative Neoplasm with Differential Effects on Hematopoietic Stem and Progenitor Cells. Cancer Cell, 2010, 17, 584-596.	16.8	324
104	Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nature Medicine, 2010, 16, 903-908.	30.7	338
105	CNS Relapse in Acute Promyeloctyic Leukemia. Journal of Clinical Oncology, 2010, 28, e409-e411.	1.6	8
106	The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood, 2009, 114, 1150-1157.	1.4	422
107	Prolonged haematological toxicity from the hyper-CVAD regimen: manifestations, frequency, and natural history in a cohort of 125 consecutive patients. Annals of Hematology, 2008, 87, 727-734.	1.8	15
108	Leukaemia cutis in atypical chronic myeloid leukaemia with a t(9;22) (p24;q11.2) leading to <i>BCRâ€JAK2</i> fusion. British Journal of Haematology, 2008, 142, 503-503.	2.5	24

#	Article	IF	CITATIONS
109	A ≥1 log rise in RQ-PCR transcript levels defines molecular relapse in core binding factor acute myeloid leukemia and predicts subsequent morphologic relapse. Leukemia and Lymphoma, 2008, 49, 517-523.	1.3	48
110	Palifermin-induced acanthosis nigricans. Internal Medicine Journal, 2007, 37, 417-418.	0.8	18
111	Safety and efficacy of pegfilgrastim compared to granulocyte colony stimulating factor (G-CSF) supporting a dose-intensive, rapidly cycling anti-metabolite containing chemotherapy regimen (Hyper-CVAD) for lymphoid malignancy. Leukemia and Lymphoma, 2006, 47, 1813-1817.	1.3	22
112	Increased mortality with FLA compared with ADE chemotherapy in high-risk AML. Blood, 2006, 108, 3950-3951.	1.4	3
113	Hereditary fibrinogen A alpha-chain amyloidosis. Pathology, 2006, 38, 380-382.	0.6	6
114	Role of VAD in the initial treatment of multiple myeloma. Blood, 2005, 106, 3674-3675.	1.4	14
115	Intestinal pseudo-obstruction complicating multiple sclerosis. Internal Medicine Journal, 2005, 35, 191-192.	0.8	5
116	Pseudoaneurysm causing partial obliteration of the left atrium: Case report and review. Catheterization and Cardiovascular Diagnosis, 1996, 38, 83-86.	0.3	8