Yohei Miwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6246844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of alkali metal cations on network rearrangement in polyisoprene ionomers. Physical Chemistry Chemical Physics, 2022, 24, 17042-17049.	1.3	5
2	Design and basic properties of polyester vitrimers combined with an ionomer concept. Molecular Systems Design and Engineering, 2021, 6, 234-241.	1.7	4
3	Stabilization of Bicontinuous Cubic Phase and Its Twoâ€6ided Nature Produced by Use of Siloxane Tails and Introduction of Molecular Nonsymmetry. Chemistry - A European Journal, 2021, 27, 10293-10302.	1.7	2
4	Evaluation for the actuation performance of dielectric elastomer actuator using polyisoprene elastomer with dynamic ionic crosslinks. Sensors and Actuators A: Physical, 2021, 332, 113143.	2.0	1
5	Toward strong self-healing polyisoprene elastomers with dynamic ionic crosslinks. Soft Matter, 2020, 16, 3384-3394.	1.2	25
6	Molecular design of anti-spindle-like molecules by use of siloxanyl terminals for a thermotropic bicontinuous cubic phase. Physical Chemistry Chemical Physics, 2020, 22, 10132-10141.	1.3	4
7	<i>N</i> , <i>N</i> -Diarylthiazol-5-amines: Structure-Specific Mechanofluorochromism and White Light Emission in the Solid State. Bulletin of the Chemical Society of Japan, 2020, 93, 927-935.	2.0	23
8	Effects of fatty acids having different alkyl tail lengths on rigidness of the shell region surrounding an ionic core and mechanical properties of poly(ethylene-co-methacrylic acid) ionomer/fatty acid blends. Polymer, 2020, 197, 122495.	1.8	5
9	Autonomous self-healing polyisoprene elastomers with high modulus and good toughness based on the synergy of dynamic ionic crosslinks and highly disordered crystals. Polymer Chemistry, 2020, 11, 6549-6558.	1.9	15
10	A gas-plastic elastomer that quickly self-heals damage with the aid of CO2 gas. Nature Communications, 2019, 10, 1828.	5.8	57
11	Thermally induced cationic polymerization of isobutyl vinyl ether in toluene in the presence of solvate ionic liquid. Polymer Chemistry, 2018, 9, 1421-1429.	1.9	7
12	Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Communications Chemistry, 2018, 1, .	2.0	129
13	Systematic exploitation of thermotropic bicontinuous cubic phase families from 1,2-bis(aryloyl)hydrazine-based molecules. Physical Chemistry Chemical Physics, 2018, 20, 7953-7961.	1.3	11
14	Optical Switching between Liquid-Crystalline Assemblies with Different Structural Symmetries and Molecular Orders. Bulletin of the Chemical Society of Japan, 2018, 91, 1652-1659.	2.0	8
15	The effects of local glass transition temperatures of ionic core–shell structures on the tensile behavior of sodium-neutralized poly(ethylene-co-methacrylic acid) ionomer/lauric acid blends. Polymer, 2018, 148, 303-309.	1.8	8
16	Pyridinium 5-aminothiazoles: specific photophysical properties and vapochromism in halogenated solvents. RSC Advances, 2017, 7, 18132-18135.	1.7	13
17	Mirror symmetry breaking by mixing of equimolar amounts of two gyroid phase-forming achiral molecules. Physical Chemistry Chemical Physics, 2016, 18, 17341-17344.	1.3	20
18	Stabilization of the bicontinuous cubic phase in siloxane-terminated mesogens, 1,2-bis[4â€2-(n-(oligodimethylsiloxyl)alkoxy)benzoyl]hydrazine. Physical Chemistry Chemical Physics, 2016, 18, 9013-9020.	1.3	12

Yohei Miwa

#	Article	IF	CITATIONS
19	A structural model of the chiral "Im3m―cubic phase. Physical Chemistry Chemical Physics, 2016, 18, 3280-3284.	1.3	34
20	Effects of the lateral substituent on the cubic phase formation of two analogous compounds, 4Ê1-n-hexadecyloxy-3Ê1-cyanobiphenyl-4-carboxylic acid (ACBC-16) and its 3Ê1-nitro compound (ANBC-16). Liquid Crystals, 2015, 42, 143-157.	0.9	3
21	Syndiotactic- and heterotactic-specific radical polymerization of N-n-propylmethacrylamide complexed with alkali metal ions. Polymer Chemistry, 2015, 6, 4927-4939.	1.9	15
22	Dual role for alkali metal cations in enhancing the low-temperature radical polymerization of N,N-dimethylacrylamide. Polymer Chemistry, 2015, 6, 2054-2064.	1.9	24
23	5-N-Arylaminothiazoles as Highly Twisted Fluorescent Monocyclic Heterocycles: Synthesis and Characterization. Journal of Organic Chemistry, 2015, 80, 10742-10756.	1.7	40
24	FT-IR Study on Liquid Crystal Phase Transitions of Thermotropic Hydrogen-Bonded Cubic Mesogenes, 1,2-Bis(4′- <i>n</i> -alkoxybenzoyl)hydrazines (BABH- <i>n</i>) and 4′- <i>n</i> -Alkoxy-3′-nitrobiphenyl-4-carboxlic acid (ANBC- <i>n</i>): Spectroscopic Evidence for Quasibinary Picture Model. Journal of Physical Chemistry B, 2015, 119, 10131-10137.	1.2	13
25	Discotic liquid crystals of transition metal complexes 51: Synthesis and mesomorphism of flat-pumpkin-shaped phthalocyanine-fullerene dyads. Journal of Porphyrins and Phthalocyanines, 2014, 18, 856-868.	0.4	8
26	Rapid Stretching Vibration at the Polymer Chain End. ACS Macro Letters, 2014, 3, 126-129.	2.3	3
27	Subnanoscopic Mapping of Glass Transition Temperature around Ionic Multiplets in Sodium-Neutralized Poly(ethylene- <i>random</i> -methacrylic acid) Ionomer. Macromolecules, 2013, 46, 5232-5237.	2.2	22
28	Simple and Highly Sensitive Measurement Method for Detection of Glass Transition Temperatures of Polymers: Application of ESR Power Saturation Phenomenon with Conventional Spin-Probe Technique. Journal of Physical Chemistry B, 2012, 116, 9277-9284.	1.2	11
29	Glass Transition Temperature and β Relaxation Temperature around Chain End of Polystyrene Determined by Site Specific Spin Labeling. Journal of Physical Chemistry B, 2012, 116, 1282-1288.	1.2	27
30	Novel and Accurate Method for Determination of Glass Transition Temperature of Spin-Labeled Polymer by ESR Microwave Power Saturation. Macromolecules, 2009, 42, 6141-6146.	2.2	21