Zhaoliang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6246751/publications.pdf

Version: 2024-02-01

85 papers 5,144 citations

34 h-index 97045 71 g-index

86 all docs 86 docs citations

86 times ranked 8023 citing authors

#	Article	IF	Citations
1	Experimental and Theoretical Insight into the Facet-Dependent Mechanisms of NO Oxidation Catalyzed by Structurally Diverse Mn ₂ O ₃ Nanocrystals. ACS Catalysis, 2022, 12, 397-410.	5. 5	38
2	Enhancement of low-temperature NH3-SCR catalytic activity and H2O & Enhancement of low-temperature NH3-SCR catalytic activity and H2O & Enhanced resistance over commercial V2O5-MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite. Catalysis Today, 2021, 376, 302-310.	2.2	44
3	Modulation of the superficial electronic structure via metal–support interaction for H2 evolution over Pd catalysts. Chemical Science, 2021, 12, 3245-3252.	3.7	6
4	Pd/SAPO-34 passive NO _x adsorbers: Stable Pd ion adsorption sites in six-member rings. Materials Research Express, 2021, 8, 035505.	0.8	4
5	A nanorod-like KTi8O16 catalyst for soot combustion. IOP Conference Series: Earth and Environmental Science, 2021, 680, 012067.	0.2	6
6	Improved Intrinsic Activity of Ce0.5Pr0.5O2 for Soot Combustion by Vacuum/Freeze-Drying. Frontiers in Environmental Chemistry, 2021, 2, .	0.7	0
7	Enhanced selective catalytic reduction of NO with NH3 over homoatomic dinuclear sites in defective \hat{l}_{\pm} -Fe2O3. Chemical Engineering Journal, 2021, 426, 131845.	6.6	13
8	Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts. Nature Catalysis, 2021, 4, 1002-1011.	16.1	40
9	Fabrication of novel hierarchical CeO ₂ sub-micro spheres via a facile hydrothermal process. Journal of Dispersion Science and Technology, 2020, 41, 1417-1426.	1.3	2
10	Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo ₂ C nanoparticles on hollow Nâ€doped carbon flowers for Liâ€S batteries. EcoMat, 2020, 2, e12020.	6.8	33
11	Dense MoS 2 Microâ€Flowers Planting on Biomassâ€Derived Carbon Fiber Network for Multifunctional Sulfur Cathodes. ChemistrySelect, 2020, 5, 7563-7570.	0.7	5
12	Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NO by NH3. Catalysis Today, 2019, 332, 35-41.	2.2	23
13	Identifying Oxygen Activation/Oxidation Sites for Efficient Soot Combustion over Silver Catalysts Interacted with Nanoflower-Like Hydrotalcite-Derived CoAlO Metal Oxides. ACS Catalysis, 2019, 9, 8772-8784.	5.5	77
14	Ion Exchange of One-Pot Synthesized Cu-SAPO-44 with NH4NO3 to Promote Cu Dispersion and Activity for Selective Catalytic Reduction of NOx with NH3. Catalysts, 2019, 9, 882.	1.6	9
15	Ultrahigh sulfur loading in ZnS1- /rGO through in situ oxidation-refilling route for high-performance Li S batteries. Journal of Power Sources, 2019, 414, 453-459.	4.0	31
16	Tremella-like nitrogen-doped microporous carbon derived from housefly larvae for efficient encapsulation of small S _{2–4} molecules in Li-S batteries. Materials Research Express, 2019, 6, 085509.	0.8	6
17	Nanoparticle Assembled Mesoporous MoO ₂ Microrods Derived from Metal Organic Framework and Wrapped with Graphene as the Sulfur Host for Longâ€Life Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2019, 6, 1801636.	1.9	34
18	Multiple strategies to decrease ignition temperature for soot combustion on ultrathin MnO2-nanosheet array. Applied Catalysis B: Environmental, 2019, 246, 312-321.	10.8	77

#	Article	IF	CITATIONS
19	A super-long life rechargeable aluminum battery. Solid State Ionics, 2018, 320, 70-75.	1.3	40
20	Molecular-Level Insight into Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ to N ₂ over a Highly Efficient Bifunctional V _{<i>x</i>} Hooksub> <i>x</i> Catalyst at Low Temperature. ACS Catalysis, 2018, 8, 4937-4949.	5.5	103
21	Mesoporous Perovskite Nanotubeâ€Array Enhanced Metallicâ€State Platinum Dispersion for Low Temperature Propane Oxidation. ChemCatChem, 2018, 10, 2184-2189.	1.8	14
22	Selective catalytic reduction of NO with NH3 over short-range ordered W O Fe structures with high thermal stability. Applied Catalysis B: Environmental, 2018, 229, 81-87.	10.8	53
23	Electron donation mechanism of superior Cs-supported oxides for catalytic soot combustion. Chemical Engineering Journal, 2018, 337, 654-660.	6.6	39
24	Active Site Identification and Modification of Electronic States by Atomic-Scale Doping To Enhance Oxide Catalyst Innovation. ACS Catalysis, 2018, 8, 1399-1404.	5.5	42
25	Enhanced kinetics of polysulfide redox reactions on Mo ₂ C/CNT in lithium–sulfur batteries. Nanotechnology, 2018, 29, 295401.	1.3	32
26	Quasi free K cations confined in hollandite-type tunnels for catalytic solid (catalyst)-solid (reactant) oxidation reactions. Applied Catalysis B: Environmental, 2018, 232, 108-116.	10.8	85
27	Zeolitic Materials for DeNO _{<i>x</i>} Selective Catalytic Reduction. ChemCatChem, 2018, 10, 29-41.	1.8	103
28	Electrocatalysis on Separator Modified by Molybdenum Trioxide Nanobelts for Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1800243.	1.9	66
29	Cathode materials for rechargeable aluminum batteries: current status and progress. Journal of Materials Chemistry A, 2017, 5, 5646-5660.	5.2	147
30	A facile method prepared nitrogen and boron doped carbon nano-tube based catalysts for oxygen reduction. International Journal of Hydrogen Energy, 2017, 42, 4123-4132.	3.8	26
31	Iron-niobium composite oxides for selective catalytic reduction of NO with NH3. Catalysis Communications, 2017, 97, 111-115.	1.6	20
32	Plausibility of potassium ion-exchanged ZSM-5 as soot combustion catalysts. Scientific Reports, 2017, 7, 3300.	1.6	14
33	Coralline‣ike Nâ€Đoped Hierarchically Porous Carbon Derived from Enteromorpha as a Host Matrix for Lithiumâ€Sulfur Battery. Chemistry - A European Journal, 2017, 23, 18208-18215.	1.7	35
34	A novel dual-template method for synthesis of SAPO-44 zeolite. RSC Advances, 2016, 6, 35910-35913.	1.7	5
35	Catalytic Control of Typical Particulate Matters and Volatile Organic Compounds Emissions from Simulated Biomass Burning. Environmental Science & Environmental Science & 2016, 50, 5825-5831.	4.6	25
36	Promotion Effects of Cesium on Perovskite Oxides for Catalytic Soot Combustion. Catalysis Letters, 2016, 146, 1397-1407.	1.4	20

3

#	Article	IF	Citations
37	The Potential of Cuâ€SAPOâ€44 in the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ChemCatChem, 2016, 8, 3740-3745.	1.8	23
38	Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln = La,) Tj ETQq0	0 0 0 rgBT	/Overlock 10
39	Reduced graphene oxide supported chromium oxide hybrid as high efficient catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 11099-11107.	3.8	30
40	Biomass-derived nanostructured porous carbons for lithium-sulfur batteries. Science China Materials, 2016, 59, 389-407.	3.5	110
41	An oxygen pool from YBaCo ₄ O ₇ -based oxides for soot combustion. Catalysis Science and Technology, 2016, 6, 4511-4515.	2.1	11
42	Synthesis and characterization of Co–Al–Fe nonstoichiometric spinel-type catalysts for catalytic CO oxidation. RSC Advances, 2016, 6, 27052-27059.	1.7	18
43	K-supported catalysts for diesel soot combustion: Making a balance between activity and stability. Catalysis Today, 2016, 264, 171-179.	2.2	45
44	Effect of Mn Incorporation Into Nd _{Alt;/SUB>O₇ Pyrochlore Oxides on Catalytic Oxidation of Soot Particulates. Nanoscience and Nanotechnology Letters, 2016, 8, 1007-1013.}	0.4	3
45	Hydrotalcites-Derived Well-Dispersed Mixed Oxides for NO _{< >x< >} Adsorption and Desorption. Science of Advanced Materials, 2016, 8, 1656-1667.	0.1	10
46	Hydrothermal Synthesis of Lanthanide Stannates Pyrochlore Nanocrystals for Catalytic Combustion of Soot Particulates. Scientific World Journal, The, 2015, 2015, 1-8.	0.8	6
47	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Letters, 2015, 15, 3899-3906.	4.5	296
48	NO _x storage and soot combustion over well-dispersed mesoporous mixed oxides via hydrotalcite-like precursors. RSC Advances, 2015, 5, 52743-52753.	1.7	17
49	Improvement of Air/Fuel Ratio Operating Window and Hydrothermal Stability for Pd-Only Three-Way Catalysts through a Pd–Ce ₂ 22O ₈ Superstructure Interaction. Environmental Science & Description (1988) 1989 1989 1989 1989 1989 1989 1989	4.6	31
50	Oxygen reduction catalytic characteristics of vanadium carbide and nitrogen doped vanadium carbide. Journal of Power Sources, 2015, 300, 483-490.	4.0	46
51	Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NO _{<i>x</i>} Emissions Control. Environmental Science & Env	4.6	76
52	A high-performance catalyst support for methanol oxidation with graphene and vanadium carbonitride. Nanoscale, 2015, 7, 1301-1307.	2.8	75
53	Significant Improvement of Thermal Stability for CeZrPrNd Oxides Simply by Supercritical CO2 Drying. PLoS ONE, 2014, 9, e88236.	1.1	2
54	Different mechanisms between reactions of soot with gaseous and adsorbed NO2. Science Bulletin, 2014, 59, 4003-4007.	1.7	3

#	Article	IF	CITATIONS
55	Catalytic Soot Oxidation Over Ce- and Cu-Doped Hydrotalcites-Derived Mesoporous Mixed Oxides. Journal of Nanoscience and Nanotechnology, 2014, 14, 7087-7096.	0.9	7
56	Promotional effects of cerium doping and NOx on the catalytic soot combustion over MnMgAlO hydrotalcite-based mixed oxides. Journal of Rare Earths, 2014, 32, 176-183.	2.5	11
57	A dual coaxial nanocable sulfur composite for high-rate lithium–sulfur batteries. Nanoscale, 2014, 6, 1653-1660.	2.8	82
58	Insight into the Electrode Mechanism in Lithiumâ€Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode. Advanced Energy Materials, 2014, 4, 1301473.	10.2	418
59	A universal route to fabricate hierarchically ordered macro/mesoporous oxides with enhanced intrinsic activity. Journal of Materials Chemistry A, 2014, 2, 6419.	5.2	18
60	In situ IR studies of selective catalytic reduction of NO with NH3 on Ce-Ti amorphous oxides. Chinese Journal of Catalysis, 2014, 35, 1289-1298.	6.9	62
61	Lanthanum-promoted copper-based hydrotalcites derived mixed oxides for NOx adsorption, soot combustion and simultaneous NOx-soot removal. Materials Research Bulletin, 2014, 51, 119-127.	2.7	27
62	A unified intermediate and mechanism for soot combustion on potassium-supported oxides. Scientific Reports, 2014, 4, 4725.	1.6	57
63	Determination of 4-tert-octylphenol in surface water samples of Jinan in China by solid phase extraction coupled with GC-MS. Journal of Environmental Sciences, 2013, 25, 1712-1717.	3.2	13
64	Facile synthesis of water-soluble and superparamagnetic Fe3O4 dots through a polyol-hydrolysis route. Journal of Materials Science, 2013, 48, 2365-2369.	1.7	8
65	NOx-assisted soot combustion over dually substituted perovskite catalysts La1â^'xKxCo1â^'yPdyO3â^'Î'. Applied Catalysis B: Environmental, 2013, 142-143, 278-289.	10.8	101
66	Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2497.	15.6	1,053
67	Co–Mn–Al Nonstoichiometric Spinel-Type Catalysts Derived from Hydrotalcites for the Simultaneous Removal of Soot and Nitrogen Oxides. Science of Advanced Materials, 2013, 5, 1449-1457.	0.1	9
68	Identification of active oxygen species for soot combustion on LaMnO3 perovskite. Catalysis Science and Technology, 2012, 2, 1822.	2.1	53
69	Direct Spectroscopic Evidence of CO Spillover and Subsequent Reaction with Preadsorbed NO _{<i>x</i>} on Pd and K Cosupported Mg–Al Mixed Oxides. Environmental Science & Technology, 2012, 46, 9614-9619.	4.6	23
70	Ce–Ti Amorphous Oxides for Selective Catalytic Reduction of NO with NH ₃ : Confirmation of Ce–O–Ti Active Sites. Environmental Science & Environmental Science	4.6	349
71	Quantification of the active site density and turnover frequency for soot combustion with O2 on Cr doped CeO2. Catalysis Today, 2011, 175, 112-116.	2.2	31
72	Synthesis of Fe-doped CeO2 nanorods by a widely applicable coprecipitation route. Chemical Engineering Journal, 2011, 178, 436-442.	6.6	20

#	Article	IF	CITATIONS
73	Synthesis of CeO ₂ â∈Based Quantum Dots through a Polyolâ∈Hydrolysis Method for Fuelâ∈Borne Catalysts. ChemCatChem, 2011, 3, 1772-1778.	1.8	14
74	A Comparison of the Formation of SiO2 Particles Under the Catalysis of Dodecylamine and Ammonia Solutions. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 925-928.	1.9	11
75	Determination of Mechanism for Soot Oxidation with NO on Potassium Supported Mgâ€Al Hydrotalcite Mixed Oxides. Chemical Engineering and Technology, 2011, 34, 1864-1868.	0.9	14
76	Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO2 solid solution nanorods prepared by co-precipitation without surfactants. Materials Letters, 2010, 64, 2659-2662.	1.3	17
77	Catalytic performance and mechanism of potassium-promoted Mg–Al hydrotalcite mixed oxides for soot combustion with O2. Journal of Catalysis, 2010, 271, 12-21.	3.1	122
78	Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. Journal of Catalysis, 2010, 276, 16-23.	3.1	224
79	Determination of Intermediates and Mechanism for Soot Combustion with NO _{<i>x</i>} /O ₂ on Potassium-Supported Mgâ°'Al Hydrotalcite Mixed Oxides by In Situ FTIR. Environmental Science & Echnology, 2010, 44, 8254-8258.	4.6	49
80	Synthesis of rare earth (Pr, Nd, Sm, Eu and Gd) hydroxide and oxide nanorods (nanobundles) by a widely applicable precipitation route. Journal of Alloys and Compounds, 2010, 507, 105-111.	2.8	35
81	Synthesis and Toluene Adsorption/Desorption Property of Beta Zeolite Coated on Cordierite Honeycomb by an In Situ Crystallization Method. Chemical Engineering and Technology, 2008, 31, 1856-1862.	0.9	6
82	Diesel soot combustion on potassium promoted hydrotalcite-based mixed oxide catalysts. Catalysis Communications, 2007, 8, 1621-1624.	1.6	33
83	Synthesis and catalytic properties of Ce0.6Zr0.4O2 solid solutions in the oxidation of soluble organic fraction from diesel engines. Applied Catalysis B: Environmental, 2007, 76, 335-347.	10.8	49
84	Resistance to sulfidation and catalytic performance of titanium–tin solid solutions in SO2+CO and NO+SO2+CO reactions. Applied Catalysis A: General, 2005, 284, 231-237.	2.2	4
85	Characterization and catalytic activity for the NO decomposition and reduction by CO of nanosized Co3O4. Journal of Alloys and Compounds, 2005, 392, 317-321.	2.8	51