Taoran Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6246740/publications.pdf

Version: 2024-02-01

136950 197818 2,576 52 32 49 citations h-index g-index papers 54 54 54 1858 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nature Protocols, 2020, 15, 2728-2757.	12.0	211
2	Functionalizing Framework Nucleicâ€Acidâ€Based Nanostructures for Biomedical Application. Advanced Materials, 2022, 34, e2107820.	21.0	148
3	Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioactive Materials, 2022, 8, 368-380.	15.6	142
4	The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Research, 2017, 5, 17018.	11.4	127
5	Anti-inflammatory and Antioxidative Effects of Tetrahedral DNA Nanostructures via the Modulation of Macrophage Responses. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3421-3430.	8.0	121
6	Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Materials Today, 2019, 24, 57-68.	14.2	114
7	Electrospun Poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate)/Graphene Oxide Scaffold: Enhanced Properties and Promoted in Vivo Bone Repair in Rats. ACS Applied Materials & Diterfaces, 2017, 9, 42589-42600.	8.0	99
8	Facilitating In Situ Tumor Imaging with a Tetrahedral DNA Frameworkâ€Enhanced Hybridization Chain Reaction Probe. Advanced Functional Materials, 2022, 32, .	14.9	93
9	A Lysosomeâ€Activated Tetrahedral Nanobox for Encapsulated siRNA Delivery. Advanced Materials, 2022, 34, e2201731.	21.0	79
10	Bioswitchable Delivery of microRNA by Framework Nucleic Acids: Application to Bone Regeneration. Small, 2021, 17, e2104359.	10.0	70
11	Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1227-1236.	3.3	67
12	A Framework Nucleic Acid Based Robotic Nanobee for Active Targeting Therapy. Advanced Functional Materials, 2021, 31, 2007342.	14.9	65
13	Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Research, 2022, 10, .	11.4	64
14	The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioactive Materials, 2021, 6, 1676-1688.	15.6	63
15	Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale, 2017, 9, 18402-18412.	5.6	62
16	Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chemical Communications, 2018, 54, 1327-1330.	4.1	62
17	Vascularization in Craniofacial Bone Tissue Engineering. Journal of Dental Research, 2018, 97, 969-976.	5.2	58
18	Angiogenesis in a 3D model containing adipose tissue stem cells and endothelial cells is mediated by canonical Wnt signaling. Bone Research, 2017, 5, 17048.	11.4	52

#	Article	IF	CITATIONS
19	Tetrahedral Framework Nucleic Acids Loaded with Aptamer AS1411 for siRNA Delivery and Gene Silencing in Malignant Melanoma. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6109-6118.	8.0	52
20	Tetrahedral framework nucleic acids act as antioxidants in acute kidney injury treatment. Chemical Engineering Journal, 2021, 413, 127426.	12.7	51
21	Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the <scp>WNT</scp> signalling pathway. Cell Proliferation, 2018, 51, e12435.	5.3	50
22	Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioactive Materials, 2021, 6, 2281-2290.	15.6	49
23	Fabrication of Calcium Phosphate Microflowers and Their Extended Application in Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30437-30447.	8.0	48
24	Injectable and thermosensitive TGF- \hat{l}^2 1-loaded PCEC hydrogel system for in vivo cartilage repair. Scientific Reports, 2017, 7, 10553.	3.3	47
25	<scp>PCL</scp> â€ <scp>PEG</scp> â€ <scp>PCL</scp> film promotes cartilage regeneration in vivo. Cell Proliferation, 2016, 49, 729-739.	5.3	44
26	Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102061.	3.3	44
27	Curved microstructures promote osteogenesis of mesenchymal stem cells via the RhoA/ <scp>ROCK</scp> pathway. Cell Proliferation, 2017, 50, .	5.3	40
28	Tetrahedral Framework Nucleic Acid Inhibits Chondrocyte Apoptosis and Oxidative Stress through Activation of Autophagy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56782-56791.	8.0	38
29	Tetrahedral DNA Nanomaterial Regulates the Biological Behaviors of Adipose-Derived Stem Cells via DNA Methylation on Dlg3. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32017-32025.	8.0	37
30	Effect of substrate stiffness on proliferation and differentiation of periodontal ligament stem cells. Cell Proliferation, 2018, 51, e12478.	5.3	37
31	Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Proliferation, 2019, 52, e12566.	5.3	37
32	PEGylated Protamine-Based Adsorbing Improves the Biological Properties and Stability of Tetrahedral Framework Nucleic Acids. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27588-27597.	8.0	35
33	Progress in Biomedical Applications of Tetrahedral Framework Nucleic Acid-Based Functional Systems. ACS Applied Materials & Damp; Interfaces, 2020, 12, 47115-47126.	8.0	33
34	Tetrahedral Framework Nucleic Acids Loading Ampicillin Improve the Drug Susceptibility against Methicillin-Resistant <i>Staphylococcus aureus</i> . ACS Applied Materials & Drug Susceptibility against Methicillin-Resistant <i>Staphylococcus aureus</i> . ACS Applied Materials & Drug Susceptibility against Methicillin Branch Staphylococcus aureus. ACS Applied Materials & Drug Susceptibility against Methicillin Branch Susceptibility against Methici	8.0	27
35	MicroRNAâ€214â€3p modified tetrahedral framework nucleic acids target survivin to induce tumour cell apoptosis. Cell Proliferation, 2020, 53, e12708.	5.3	25
36	Biological Effect of Differently Sized Tetrahedral Framework Nucleic Acids: Endocytosis, Proliferation, Migration, and Biodistribution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57067-57074.	8.0	25

#	Article	IF	CITATIONS
37	Hard tissue stability after guided bone regeneration: a comparison between digital titanium mesh and resorbable membrane. International Journal of Oral Science, 2021, 13, 37.	8.6	17
38	Hypoxia triggers angiogenesis by increasing expression of LOX genes in 3-D culture of ASCs and ECs. Experimental Cell Research, 2017, 352, 157-163.	2.6	16
39	DNA-Origami NanoTrap for Studying the Selective Barriers Formed by Phenylalanine-Glycine-Rich Nucleoporins. Journal of the American Chemical Society, 2021, 143, 12294-12303.	13.7	15
40	Tetrahedral DNA nanostructure improves transport efficiency and antiâ€fungal effect of histatin 5 against <i>Candida albicans</i> . Cell Proliferation, 2021, 54, e13020.	5.3	14
41	A potential flower-like coating consisting of calcium-phosphate nanosheets on titanium surface. Chinese Chemical Letters, 2017, 28, 1893-1896.	9.0	13
42	Matrix stiffness regulates arteriovenous differentiation of endothelial progenitor cells during vasculogenesis in nude mice. Cell Proliferation, 2019, 52, e12557.	5.3	13
43	Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway. Nanoscale, 2021, 13, 15598-15610.	5.6	13
44	Therapeutic Effects of Self-Assembled Tetrahedral Framework Nucleic Acids on Liver Regeneration in Acute Liver Failure. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13136-13146.	8.0	12
45	Reconstruction of Mandible: A Fully Digital Workflow From Visualized Iliac Bone Grafting to Implant Restoration. Journal of Oral and Maxillofacial Surgery, 2017, 75, 1403.e1-1403.e10.	1.2	9
46	DNA Nanorobot Delivers Antisense Oligonucleotides Silencing c-Met Gene Expression for Cancer Therapy. Journal of Biomedical Nanotechnology, 2019, 15, 1948-1959.	1.1	8
47	Fabrication of Electrospun 3D Nanofibrous Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate)/Graphene Scaffolds for Potential Bone Tissue Engineering: Effects of Graphene on Scaffold Properties and Cellular Behaviors. Journal of Biomedical Nanotechnology, 2017, 13, 822-834.	1.1	6
48	Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation. Current Stem Cell Research and Therapy, 2016, 11, 290-298.	1.3	6
49	Positive Neuroplastic Effect of DNA Framework Nucleic Acids on Neuropsychiatric Diseases. , 2022, 4, 665-674.		6
50	Characterization, Specific Demand and Application of Nanomaterials in Bone Regeneration. Journal of Nanoscience and Nanotechnology, 2016, 16, 9381-9392.	0.9	5
51	Application of Stem Cells and the Factors Influence Their Differentiation in Cartilage Tissue Engineering. Pancreatic Islet Biology, 2017, , 1-20.	0.3	1
52	Bioswitchable Delivery of microRNA by Framework Nucleic Acids: Application to Bone Regeneration (Small 47/2021). Small, 2021, 17, 2170248.	10.0	0