Xiangming Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6246624/publications.pdf Version: 2024-02-01

XIANCMING XII

#	Article	IF	CITATIONS
1	The development of integrated circuits based on two-dimensional materials. Nature Electronics, 2021, 4, 775-785.	13.1	129
2	MXene Derived Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 20037-20042.	6.6	110
3	Covalent Organic Frameworks as Negative Electrodes for Highâ€Performance Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001673.	10.2	107
4	Growth of 2D Materials at the Wafer Scale. Advanced Materials, 2022, 34, e2108258.	11.1	43
5	Highâ€Performance Monolayer MoS ₂ Films at the Wafer Scale by Two‣tep Growth. Advanced Functional Materials, 2019, 29, 1901070.	7.8	40
6	Synthesis of NiO nanostructures and their catalytic activity in the thermal decomposition of ammonium perchlorate. CrystEngComm, 2016, 18, 4836-4843.	1.3	39
7	Autonomous MXene-PVDF actuator for flexible solar trackers. Nano Energy, 2020, 77, 105277.	8.2	35
8	Wafer scale quasi single crystalline MoS ₂ realized by epitaxial phase conversion. 2D Materials, 2019, 6, 015030.	2.0	31
9	All-Solution-Processed Quantum Dot Electrical Double-Layer Transistors Enhanced by Surface Charges of Ti ₃ C ₂ T _{<i>x</i>} MXene Contacts. ACS Nano, 2021, 15, 5221-5229.	7.3	30
10	Singleâ€Crystal Hybrid Perovskite Platelets on Graphene: A Mixedâ€Dimensional Van Der Waals Heterostructure with Strong Interface Coupling. Advanced Functional Materials, 2020, 30, 1909672.	7.8	28
11	lontronics Using V ₂ CT _{<i>x</i>} MXene-Derived Metal–Organic Framework Solid Electrolytes. ACS Nano, 2020, 14, 9840-9847.	7.3	27
12	Synthesis and their physicochemical behaviors of flower-like Co3O4 microspheres. Journal of Alloys and Compounds, 2016, 654, 523-528.	2.8	25
13	Highâ€Yield Ti ₃ C ₂ T <i>_x</i> MXene–MoS ₂ Integrated Circuits. Advanced Materials, 2022, 34, e2107370.	11.1	24
14	Self-assembly process of China rose-like β-Co(OH) ₂ and its topotactic conversion route to Co ₃ O ₄ with optimizable catalytic performance. CrystEngComm, 2015, 17, 8248-8255.	1.3	22
15	Enhanced Quality of Waferâ€Scale MoS ₂ Films by a Capping Layer Annealing Process. Advanced Functional Materials, 2020, 30, 1908040.	7.8	19
16	Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. Journal of Materials Science, 2018, 53, 1356-1364.	1.7	18
17	Electrochemical Thinâ€Film Transistors using Covalent Organic Framework Channel. Advanced Functional Materials, 2022, 32, .	7.8	16
18	Hydrothermal synthesis of cobalt particles with hierarchy structure and physicochemical properties. Materials Research Bulletin, 2015, 72, 7-12.	2.7	13

XIANGMING XU

#	ARTICLE	IF	CITATIONS
19	Efficient Naâ€lon Storage in 2D TiS ₂ Formed by a Vapor Phase Anionâ€Exchange Process. Small Methods, 2020, 4, 2000439.	4.6	12
20	Two-Dimensional TiO ₂ /TiS ₂ Hybrid Nanosheet Anodes for High-Rate Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 8721-8727.	2.5	12
21	The synthesis of ultra-long cobalt chains and its outstanding catalytic performance on the thermal decomposition of ammonium perchlorate. Materials Chemistry and Physics, 2017, 201, 235-240.	2.0	10
22	Lattice Orientation Heredity in the Transformation of 2D Epitaxial Films. Advanced Materials, 2022, 34, e2105190.	11.1	6
23	2D Optoelectronics: Highâ€Performance Monolayer MoS ₂ Films at the Wafer Scale by Twoâ€6tep Growth (Adv. Funct. Mater. 32/2019). Advanced Functional Materials, 2019, 29, 1970224.	7.8	2