
## Jessika E Trancik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/624612/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evaluating Low-Carbon Transportation Technologies When Demand Responds to Price. Environmental Science & Technology, 2022, 56, 2096-2106.                                      | 10.0 | 5         |
| 2  | Personal vehicle electrification and charging solutions for high-energy days. Nature Energy, 2021, 6, 105-114.                                                                 | 39.5 | 37        |
| 3  | Testing and improving technology forecasts for better climate policy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2109417118. | 7.1  | 0         |
| 4  | Re-examining rates of lithium-ion battery technology improvement and cost decline. Energy and Environmental Science, 2021, 14, 1635-1651.                                      | 30.8 | 211       |
| 5  | Determinants of lithium-ion battery technology cost decline. Energy and Environmental Science, 2021, 14, 6074-6098.                                                            | 30.8 | 46        |
| 6  | Sources of Cost Overrun in Nuclear Power Plant Construction Call for a New Approach to Engineering Design. Joule, 2020, 4, 2348-2373.                                          | 24.0 | 32        |
| 7  | Research priorities for supporting subnational climate policies. Wiley Interdisciplinary Reviews:<br>Climate Change, 2020, 11, e646.                                           | 8.1  | 7         |
| 8  | Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization. Joule, 2019, 3, 2134-2153.                                                             | 24.0 | 251       |
| 9  | Timelines for mitigating the methane impacts of using natural gas for carbon dioxide abatement.<br>Environmental Research Letters, 2019, 14, 124069.                           | 5.2  | 10        |
| 10 | Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy, 2018, 123, 700-710.                                                                            | 8.8  | 255       |
| 11 | Net-zero emissions energy systems. Science, 2018, 360, .                                                                                                                       | 12.6 | 1,165     |
| 12 | Vehicle emissions of short-lived and long-lived climate forcers: trends and tradeoffs. Faraday Discussions, 2017, 200, 453-474.                                                | 3.2  | 13        |
| 13 | TripEnergy: Estimating Personal Vehicle Energy Consumption Given Limited Travel Survey Data.<br>Transportation Research Record, 2017, 2628, 58-66.                             | 1.9  | 15        |
| 14 | Testing emissions equivalency metrics against climate policy goals. Environmental Science and Policy, 2016, 66, 191-198.                                                       | 4.9  | 10        |
| 15 | Personal Vehicles Evaluated against Climate Change Mitigation Targets. Environmental Science &<br>Technology, 2016, 50, 10795-10804.                                           | 10.0 | 85        |
| 16 | Potential for widespread electrification of personal vehicle travel in the United States. Nature Energy, 2016, 1, .                                                            | 39.5 | 208       |
| 17 | Value of storage technologies for wind and solarÂenergy. Nature Climate Change, 2016, 6, 964-969.                                                                              | 18.8 | 275       |
| 18 | Methane mitigation timelines to inform energy technology evaluation. Environmental Research<br>Letters, 2015, 10, 114024.                                                      | 5.2  | 6         |

2

Jessika E Trancik

| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Metal production requirements for rapid photovoltaics deployment. Energy and Environmental Science, 2015, 8, 1651-1659.                                     | 30.8 | 65        |
| 20 | Timelines for Mitigating Methane Emissions from Energy Technologies. SSRN Electronic Journal, 2014, ,                                                       | 0.4  | 0         |
| 21 | Climate impacts of energy technologies depend on emissions timing. Nature Climate Change, 2014, 4, 347-352.                                                 | 18.8 | 47        |
| 22 | Growth in metals production for rapid photovoltaics deployment. , 2014, , .                                                                                 |      | 3         |
| 23 | Effectiveness of a Segmental Approach to Climate Policy. Environmental Science & Technology, 2014, 48, 27-35.                                               | 10.0 | 17        |
| 24 | Renewable energy: Back the renewables boom. Nature, 2014, 507, 300-302.                                                                                     | 27.8 | 133       |
| 25 | Energy Technologies Evaluated against Climate Targets Using a Cost and Carbon Trade-off Curve.<br>Environmental Science & Technology, 2013, 47, 6673-6680.  | 10.0 | 33        |
| 26 | Statistical Basis for Predicting Technological Progress. PLoS ONE, 2013, 8, e52669.                                                                         | 2.5  | 173       |
| 27 | Determinants of the Pace of Global Innovation in Energy Technologies. PLoS ONE, 2013, 8, e67864.                                                            | 2.5  | 68        |
| 28 | Superexponential long-term trends in information technology. Technological Forecasting and Social Change, 2011, 78, 1356-1364.                              | 11.6 | 28        |
| 29 | Historical costs of coal-fired electricity and implications for the future. Energy Policy, 2011, 39, 3042-3054.                                             | 8.8  | 81        |
| 30 | Role of design complexity in technology improvement. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9008-9013. | 7.1  | 115       |
| 31 | Metals Production Requirements for Rapid Photovoltaics Deployment. SSRN Electronic Journal, 0, , .                                                          | 0.4  | 0         |
| 32 | Evaluating the Changing Causes of Photovoltaics Cost Reduction. SSRN Electronic Journal, 0, , .                                                             | 0.4  | 5         |