Anton F W Van Der Steen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6245653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicomponent material property characterization of atherosclerotic human carotid arteries through a Bayesian Optimization based inverse finite element approach. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 104996.	1.5	7
2	Spectroscopic thermo-elastic optical coherence tomography for tissue characterization. Biomedical Optics Express, 2022, 13, 1430.	1.5	5
3	Proximal Region of Carotid Atherosclerotic Plaque Shows More Intraplaque Hemorrhage: The Plaque at Risk Study. American Journal of Neuroradiology, 2022, 43, 265-271.	1.2	6
4	Internalization of targeted microbubbles by endothelial cells and drug delivery by pores and tunnels. Journal of Controlled Release, 2022, 347, 460-475.	4.8	12
5	Independent Component Analysis Filter for Small Vessel Contrast Imaging During Fast Tissue Motion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2282-2292.	1.7	1
6	Lipid-rich Plaques Detected by Near-infrared Spectroscopy Are More Frequently Exposed to High Shear Stress. Journal of Cardiovascular Translational Research, 2021, 14, 416-425.	1.1	10
7	Imaging inflammation in atherosclerotic plaques, targeting SST2 with [111In]In-DOTA-JR11. Journal of Nuclear Cardiology, 2021, 28, 2506-2513.	1.4	12
8	Morphometric and Mechanical Analyses of Calcifications and Fibrous Plaque Tissue in Carotid Arteries for Plaque Rupture Risk Assessment. IEEE Transactions on Biomedical Engineering, 2021, 68, 1429-1438.	2.5	13
9	The Impact of Lipid Handling and Phase Distribution on the Acoustic Behavior of Microbubbles. Pharmaceutics, 2021, 13, 119.	2.0	11
10	Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging. Journal of Lipid Research, 2021, 62, 100020.	2.0	27
11	The Preparation of Chicken Ex Ovo Embryos and Chorioallantoic Membrane Vessels as In Vivo Model for Contrast-Enhanced Ultrasound Imaging and Microbubble-Mediated Drug Delivery Studies. Journal of Visualized Experiments, 2021, , .	0.2	5
12	Autoradiographical assessment of inflammation-targeting radioligands for atherosclerosis imaging: potential for plaque phenotype identification. EJNMMI Research, 2021, 11, 27.	1.1	7
13	Real-Time Coded Excitation Imaging Using a CMUT-Based Side Looking Array for Intravascular Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2048-2058.	1.7	10
14	Corrections to "Vibrational Responses of Bound and Nonbound Targeted Lipid-Coated Single Microbubbles― IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2319-2319.	1.7	0
15	Micro Spectroscopic Photoacoustic (μsPA) imaging of advanced carotid atherosclerosis. Photoacoustics, 2021, 22, 100261.	4.4	9
16	Photoacoustic flow velocity imaging based on complex field decorrelation. Photoacoustics, 2021, 22, 100256.	4.4	6
17	Corrections to "Targeted Microbubble Mediated Sonoporation of Endothelial Cells In Vivo― IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2320-2320.	1.7	0
18	Corrections to "Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation― IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2321-2321.	1.7	1

#	Article	IF	CITATIONS
19	Lipoprotein(a) levels and atherosclerotic plaque characteristics in the carotid artery: The Plaque at RISK (PARISK) study. Atherosclerosis, 2021, 329, 22-29.	0.4	21
20	Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2432-2443.	1.7	4
21	Dolichoarteriopathies of the extracranial internal carotid artery: The Plaque At RISK study. European Journal of Neurology, 2021, 28, 3133-3138.	1.7	4
22	Multicomponent Mechanical Characterization of Atherosclerotic Human Coronary Arteries: An Experimental and Computational Hybrid Approach. Frontiers in Physiology, 2021, 12, 733009.	1.3	5
23	High Frame Rate Volumetric Imaging of Microbubbles Using a Sparse Array and Spatial Coherence Beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3069-3081.	1.7	17
24	Vancomycin-decorated microbubbles as a theranostic agent for Staphylococcus aureus biofilms. International Journal of Pharmaceutics, 2021, 609, 121154.	2.6	11
25	Association between Intraplaque Hemorrhage and Vascular Remodeling in Carotid Arteries: The Plaque at RISK (PARISK) Study. Cerebrovascular Diseases, 2021, 50, 94-99.	0.8	3
26	Plaque Composition as a Predictor of Plaque Ulceration in Carotid Artery Atherosclerosis: The Plaque At RISK Study. American Journal of Neuroradiology, 2021, 42, 144-151.	1.2	10
27	The definition of low wall shear stress and its effect on plaque progression estimation in human coronary arteries. Scientific Reports, 2021, 11, 22086.	1.6	13
28	The Association Between Time-Varying Wall Shear Stress and the Development of Plaque Ulcerations in Carotid Arteries From the Plaque at Risk Study. Frontiers in Cardiovascular Medicine, 2021, 8, 732646.	1.1	3
29	The Correlation Between Wall Shear Stress and Plaque Composition in Advanced Human Carotid Atherosclerosis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 828577.	2.0	15
30	Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. Cardiovascular Research, 2020, 116, 1136-1146.	1.8	66
31	Simultaneous Morphological and Flow Imaging Enabled by Megahertz Intravascular Doppler Optical Coherence Tomography. IEEE Transactions on Medical Imaging, 2020, 39, 1535-1544.	5.4	9
32	P1538 Light exercise may induce an increase in the propagation velocity of naturally occurring shear waves. European Heart Journal Cardiovascular Imaging, 2020, 21, .	0.5	0
33	A direct comparison of natural and acoustic-radiation-force-induced cardiac mechanicalÂwaves. Scientific Reports, 2020, 10, 18431.	1.6	11
34	Contemporary rationale for non-invasive imaging of adverse coronary plaque features to identify the vulnerable patient:Âa Position Paper from the European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 2020, 21, 1177-1183.	0.5	29
35	Vulnerable plaques and patients: state-of-the-art. European Heart Journal, 2020, 41, 2997-3004.	1.0	98
36	High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles. Ultrasound in Medicine and Biology, 2020, 46, 2017-2029.	0.7	26

#	Article	IF	CITATIONS
37	Parasternal Versus Apical View in Cardiac Natural Mechanical Wave Speed Measurements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1590-1602.	1.7	11
38	Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound. Ultrasound in Medicine and Biology, 2020, 46, 2801-2809.	0.7	12
39	In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT. International Journal of Cardiovascular Imaging, 2020, 36, 1021-1029.	0.7	5
40	4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. Ultrasound in Medicine and Biology, 2020, 46, 805-817.	0.7	38
41	Opening of endothelial cell–cell contacts due to sonoporation. Journal of Controlled Release, 2020, 322, 426-438.	4.8	53
42	Myocardial Stretch Post-atrial Contraction in Healthy Volunteers and Hypertrophic Cardiomyopathy Patients. Ultrasound in Medicine and Biology, 2019, 45, 1987-1998.	0.7	13
43	Combined Confocal Microscope and Brandaris 128 Ultra-High-Speed Camera. Ultrasound in Medicine and Biology, 2019, 45, 2575-2582.	0.7	19
44	Data Processing Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry, 2019, 30, 1790-1800.	1.2	22
45	Variation in Coronary Atherosclerosis Severity Related to a Distinct LDL (Low-Density Lipoprotein) Profile. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2338-2352.	1.1	19
46	An MRI-based method to register patient-specific wall shear stress data to histology. PLoS ONE, 2019, 14, e0217271.	1.1	3
47	Naturally Occurring Shear Waves in Healthy Volunteers and Hypertrophic Cardiomyopathy Patients. Ultrasound in Medicine and Biology, 2019, 45, 1977-1986.	0.7	23
48	High-Frame-Rate Echo-Particle Image Velocimetry Can Measure the High-Velocity Diastolic Flow Patterns. Circulation: Cardiovascular Imaging, 2019, 12, e008856.	1.3	20
49	5222A distinct LDL profile to predict the risk of cardiovascular disease in familial hypercholesterolemia subjects: initial pre-clinical results. European Heart Journal, 2019, 40, .	1.0	0
50	P3109Coronary vulnerable plaque development is promoted by multidirectional wall shear stress. European Heart Journal, 2019, 40, .	1.0	0
51	Real-time photoacoustic assessment of radiofrequency ablation lesion formation in the left atrium. Photoacoustics, 2019, 16, 100150.	4.4	29
52	Acoustic Characterization of the CLINIcell for Ultrasound Contrast Agent Studies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2019, 66, 244-246.	1.7	15
53	Functional Ultrasound (fUS) During Awake Brain Surgery: The Clinical Potential of Intra-Operative Functional and Vascular Brain Mapping. Frontiers in Neuroscience, 2019, 13, 1384.	1.4	61
54	In vivo intravascular photoacoustic imaging of plaque lipid in coronary atherosclerosis. EuroIntervention, 2019, 15, 452-456.	1.4	14

#	Article	IF	CITATIONS
55	Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice. Royal Society Open Science, 2018, 5, 171447.	1.1	20
56	High Frame Rate Ultrasound Particle Image Velocimetry for Estimating High Velocity Flow Patterns in the Left Ventricle. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2222-2232.	1.7	21
57	Sparse Ultrasound Image Reconstruction From a Shape-Sensing Single-Element Forward-Looking Catheter. IEEE Transactions on Biomedical Engineering, 2018, 65, 2210-2218.	2.5	16
58	Intima heterogeneity in stress assessment of atherosclerotic plaques. Interface Focus, 2018, 8, 20170008.	1.5	16
59	Quantitative imaging performance of frequency-tunable capacitive micromachined ultrasonic transducer array designed for intracardiac application: Phantom study. Ultrasonics, 2018, 84, 421-429.	2.1	9
60	P4634Calcifications as an indicator for an NIRS-based risk profile of coronary atherosclerotic plaques. European Heart Journal, 2018, 39, .	1.0	0
61	SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures. PLoS ONE, 2018, 13, e0204354.	1.1	4
62	A 2-D Ultrasound Transducer With Front-End ASIC and Low Cable Count for 3-D Forward-Looking Intravascular Imaging: Performance and Characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1832-1844.	1.7	31
63	The effect of the heart rate lowering drug Ivabradine on hemodynamics in atherosclerotic mice. Scientific Reports, 2018, 8, 14014.	1.6	4
64	1350Near infrared positive regions are most often located at areas exposed to high shear stress. European Heart Journal, 2018, 39, .	1.0	0
65	Structured ultrasound microscopy. Applied Physics Letters, 2018, 112, .	1.5	17
66	No Association between Thrombin Generation and Intra-Plaque Haemorrhage in Symptomatic Carotid Atherosclerotic Plaques: The Plaque at RISK (PARISK) Study. Thrombosis and Haemostasis, 2018, 118, 1461-1469.	1.8	9
67	Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium. Biomedical Optics Express, 2018, 9, 1309.	1.5	25
68	Fast Volumetric Imaging Using a Matrix Transesophageal Echocardiography Probe with Partitioned Transmit–Receive Array. Ultrasound in Medicine and Biology, 2018, 44, 2025-2042.	0.7	5
69	Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. European Heart Journal, 2017, 38, 400-412.	1.0	152
70	Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: <i>In Vitro</i> and <i>In Vivo</i> Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 555-567.	1.7	24
71	Cardiac Shear Wave Velocity Detection in the Porcine Heart. Ultrasound in Medicine and Biology, 2017, 43, 753-764.	0.7	50
72	Cardiac Shear Wave Elastography Using a Clinical Ultrasound System. Ultrasound in Medicine and Biology, 2017, 43, 1596-1606.	0.7	37

ANTON F W VAN DER STEEN

#	Article	IF	CITATIONS
73	Model-based cap thickness and peak cap stress prediction for carotid MRI. Journal of Biomechanics, 2017, 60, 175-180.	0.9	2
74	On the dynamics of StemBells: Microbubble-conjugated stem cells for ultrasound-controlled delivery. Applied Physics Letters, 2017, 111, 023701.	1.5	5
75	Notice of Removal: Forward-looking IVUS transducer with front-end ASIC for 3D imaging. , 2017, , .		Ο
76	Preclinical Testing of Frequency-Tunable Capacitive Micromachined Ultrasonic Transducer Probe Prototypes. Ultrasound in Medicine and Biology, 2017, 43, 2079-2085.	0.7	11
77	Optical coherence tomography attenuation imaging for lipid core detection: an ex-vivo validation study. International Journal of Cardiovascular Imaging, 2017, 33, 5-11.	0.7	22
78	Diffuse shear wave elastography in a thin plate phantom. , 2017, , .		0
79	Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. Biomedical Optics Express, 2017, 8, 943.	1.5	80
80	Thermo-elastic optical coherence tomography. Optics Letters, 2017, 42, 3466.	1.7	16
81	Mutual radiation impedance of circular CMUTs on a cylinder. , 2016, , .		1
82	Contrast-enhanced micro-CT imaging in murine carotid arteries: a new protocol for computing wall shear stress. BioMedical Engineering OnLine, 2016, 15, 156.	1.3	13
83	Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle. BioMedical Engineering OnLine, 2016, 15, 91.	1.3	22
84	Combined optical sizing and acoustical characterization of single freely-floating microbubbles. Applied Physics Letters, 2016, 109, .	1.5	3
85	Autofluorescence: A New NIR onÂtheÂBlock. JACC: Cardiovascular Imaging, 2016, 9, 1315-1317.	2.3	3
86	High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques. Atherosclerosis, 2016, 251, 348-354.	0.4	79
87	The impact of scaled boundary conditions on wall shear stress computations in atherosclerotic human coronary bifurcations. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1304-H1312.	1.5	10
88	Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles. Journal of Controlled Release, 2016, 238, 197-211.	4.8	75
89	Quantification of Endothelial αvβ3 Expression with High-Frequency Ultrasound and Targeted Microbubbles: InÂVitroÂand InÂVivo Studies. Ultrasound in Medicine and Biology, 2016, 42, 2283-2293. 	0.7	21
90	Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque. Ultrasound in Medicine and Biology, 2016, 42, 2017-2025.	0.7	24

#	Article	IF	CITATIONS
91	Peak cap stress calculations in coronary atherosclerotic plaques with an incomplete necrotic core geometry. BioMedical Engineering OnLine, 2016, 15, 48.	1.3	18
92	A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging. Ultrasound in Medicine and Biology, 2016, 42, 1239-1243.	0.7	17
93	Functional and anatomical measures for outflow boundary conditions in atherosclerotic coronary bifurcations. Journal of Biomechanics, 2016, 49, 2127-2134.	0.9	14
94	A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis. Annals of Biomedical Engineering, 2016, 44, 968-979.	1.3	15
95	The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 771-779.	0.9	23
96	Live Observation of Atherosclerotic Plaque Disruption in Apolipoprotein E-Deficient Mouse. Ultrasound International Open, 2015, 01, E67-E71.	0.3	7
97	Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography. Biomedical Optics Express, 2015, 6, 5021.	1.5	80
98	Dynamic acousto-elastic testing applied to a highly dispersive medium and evidence of shell buckling of lipid-coated gas microbubbles. Journal of the Acoustical Society of America, 2015, 138, 2668-2677.	0.5	8
99	A Computer-Simulation Study on the Effects of MRI Voxel Dimensions on Carotid Plaque Lipid-Core and Fibrous Cap Segmentation and Stress Modeling. PLoS ONE, 2015, 10, e0123031.	1.1	6
100	Influence of the Accuracy of Angiography-Based Reconstructions on Velocity and Wall Shear Stress Computations in Coronary Bifurcations: A Phantom Study. PLoS ONE, 2015, 10, e0145114.	1.1	16
101	Improved Segmentation of Multiple Cavities of the Heart in Wide-View 3-D Transesophageal Echocardiograms. Ultrasound in Medicine and Biology, 2015, 41, 1991-2000.	0.7	7
102	Subharmonic, Non-linear Fundamental and Ultraharmonic Imaging of Microbubble Contrast at High Frequencies. Ultrasound in Medicine and Biology, 2015, 41, 486-497.	0.7	29
103	Fully Automated Carotid Plaque Segmentation in Combined Contrast-Enhanced and B-Mode Ultrasound. Ultrasound in Medicine and Biology, 2015, 41, 517-531.	0.7	14
104	Carotid plaque elasticity estimation using ultrasound elastography, MRI, and inverse FEA – A numerical feasibility study. Medical Engineering and Physics, 2015, 37, 801-807.	0.8	11
105	Carotid Plaque Morphological Classification Compared With Biomechanical Cap Stress. Stroke, 2015, 46, 2124-2128.	1.0	20
106	Non-linear Response and Viscoelastic Properties of Lipid-Coated Microbubbles: DSPC versus DPPC. Ultrasound in Medicine and Biology, 2015, 41, 1432-1445.	0.7	51
107	Plaque Components in Symptomatic Moderately Stenosed Carotid Arteries Related to Cerebral Infarcts. Stroke, 2015, 46, 568-571.	1.0	15
108	Quantitative Contrast-Enhanced Ultrasound of Intraplaque Neovascularization in Patients with Carotid Atherosclerosis. Ultraschall in Der Medizin, 2015, 36, 154-161.	0.8	28

ANTON F W VAN DER STEEN

#	Article	IF	CITATIONS
109	Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomedical Optics Express, 2015, 6, 3276.	1.5	58
110	Use of Antiplatelet Agents Is Associated With Intraplaque Hemorrhage on Carotid Magnetic Resonance Imaging. Stroke, 2015, 46, 3411-3415.	1.0	26
111	Intraplaque Hemorrhage and the Plaque Surface in Carotid Atherosclerosis: The Plaque At RISK Study (PARISK). American Journal of Neuroradiology, 2015, 36, 2127-2133.	1.2	57
112	Mapping Intravascular Ultrasound Controversies in Interventional Cardiology Practice. PLoS ONE, 2014, 9, e97215.	1.1	21
113	Photoacoustic imaging of carotid artery atherosclerosis. Journal of Biomedical Optics, 2014, 19, 110504.	1.4	61
114	DSPC or DPPC as main shell component influences ligand distribution and binding area of lipid-coated targeted microbubbles. European Journal of Lipid Science and Technology, 2014, 116, 1217-1227.	1.0	31
115	Plaque at RISK (PARISK): Prospective Multicenter Study to Improve Diagnosis of High-Risk Carotid Plaques. International Journal of Stroke, 2014, 9, 747-754.	2.9	76
116	Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. Journal of Biomedical Optics, 2014, 19, 026006.	1.4	63
117	Intravascular Photoacoustic Imaging: A New Tool for Vulnerable Plaque Identification. Ultrasound in Medicine and Biology, 2014, 40, 1037-1048.	0.7	104
118	Impact of gender on the density of intraplaque neovascularization: AÂquantitative contrast-enhanced ultrasound study. Atherosclerosis, 2014, 233, 461-466.	0.4	9
119	3D reconstruction techniques of human coronary bifurcations for shear stress computations. Journal of Biomechanics, 2014, 47, 39-43.	0.9	39
120	Geometry-based pressure drop prediction in mildly diseased human coronary arteries. Journal of Biomechanics, 2014, 47, 1810-1815.	0.9	20
121	Assessment of carotid atherosclerosis, intraplaque neovascularization, and plaque ulceration using quantitative contrast-enhanced ultrasound in asymptomatic patients with diabetes mellitus. European Heart Journal Cardiovascular Imaging, 2014, 15, 1213-1218.	0.5	36
122	Nonlinear dynamics of single freely-floating microbubbles under prolonged insonation. , 2014, , .		0
123	High-Definition Imaging of Carotid Artery Wall Dynamics. Ultrasound in Medicine and Biology, 2014, 40, 2392-2403.	0.7	90
124	Low-Amplitude Non-linear Volume Vibrations of Single Microbubbles Measured with an "Acoustical Camera― Ultrasound in Medicine and Biology, 2014, 40, 1282-1295.	0.7	19
125	Lipid Shedding from Single Oscillating Microbubbles. Ultrasound in Medicine and Biology, 2014, 40, 1834-1846.	0.7	71
126	Imaging Microvasculature with Contrast-Enhanced Ultraharmonic Ultrasound. Ultrasound in Medicine and Biology, 2014, 40, 1318-1328.	0.7	27

ANTON F W VAN DER STEEN

#	Article	IF	CITATIONS
127	Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics, 2014, 2, 12-20.	4.4	120
128	Atherosclerotic plaque fibrous cap assessment under an oblique scan plane orientation in carotid MRI. Quantitative Imaging in Medicine and Surgery, 2014, 4, 216-24.	1.1	1
129	Can We Use In Vivo MRI and FEA to Determine Peak Cap Stress in Carotid Plaques? MRI Simulations Provide Answers. , 2013, , .		0
130	Intravascular optical coherence tomography imaging at 3200 frames per second. Optics Letters, 2013, 38, 1715.	1.7	103
131	Intravascular ultrasound chirp imaging. Applied Physics Letters, 2012, 100, 043703.	1.5	30
132	Optimal kernel sizes for 4D image reconstruction using normalized convolution from sparse fast-rotating transesophageal 2D ultrasound images. , 2012, , .		1
133	An "acoustical camera―for <i>in vitro</i> characterization of contrast agent microbubble vibrations. Applied Physics Letters, 2012, 100, .	1.5	15
134	Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies. Journal of the American College of Cardiology, 2012, 59, 1058-1072.	1.2	1,530
135	Vascular ultrasound for atherosclerosis imaging. Interface Focus, 2011, 1, 565-575.	1.5	121
136	In Vivo 3D Distribution of Lipid-Core Plaque in Human Coronary Artery as Assessed by Fusion of Near Infrared Spectroscopy–Intravascular Ultrasound and Multislice Computed Tomography Scan. Circulation: Cardiovascular Imaging, 2010, 3, e6-7.	1.3	29
137	INTRAVASCULAR ULTRASOUND PALPOGRAPHY: A NEW METHOD FOR THE DETECTION OF THE VULNERABLE PLAQUE. Journal of Mechanics in Medicine and Biology, 2006, 06, 35-38.	0.3	0
138	IVUS beyond the horizon. EuroIntervention, 2006, 2, 132-42.	1.4	7
139	Terminology for high-risk and vulnerable coronary artery plaques. European Heart Journal, 2004, 25, 1077-1082.	1.0	478