
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6245602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials, 2010, 3, 2172-2195.	1.3	480
2	The preparation of coupled WO3/TiO2 photocatalyst by ball milling. Powder Technology, 2005, 160, 198-202.	2.1	165
3	Combinatorial Approach to the Development of a Single Mass YVO ₄ :Bi ³⁺ ,Eu ³⁺ Phosphor with Red and Green Dual Colors for High Color Rendering White Light-Emitting Diodes. ACS Combinatorial Science, 2010, 12, 587-594.	3.3	140
4	Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12:Ce3+ luminescence by doping Gd3+ for warm white LEDs. Scientific Reports, 2015, 5, 11514.	1.6	102
5	The preparation of nitrogen-doped photocatalyst TiO2â^'xNx by ball milling. Chemical Physics Letters, 2005, 413, 404-409.	1.2	97
6	The preparation of coupled SnO2/TiO2 photocatalyst by ball milling. Materials Chemistry and Physics, 2006, 98, 116-120.	2.0	96
7	Graphitic C3N4 quantum dots for next-generation QLED displays. Materials Today, 2019, 22, 76-84.	8.3	85
8	Combinatorial chemistry approach to searching phosphors for white light-emitting diodes in (Gd-Y-Bi-Eu)VO4 quaternary system. Journal of Materials Chemistry, 2011, 21, 3677.	6.7	73
9	Combinatorial Study of the Optimization of Y2O3:Bi,Eu Red Phosphors. ACS Combinatorial Science, 2007, 9, 343-346.	3.3	65
10	Understanding the Local and Electronic Structures toward Enhanced Thermal Stable Luminescence of CaAlSiN ₃ :Eu ²⁺ . Chemistry of Materials, 2016, 28, 5505-5515.	3.2	57
11	A new green phosphor of SrAl2O4:Eu2+,Ce3+,Li+ for alternating current driven light-emitting diodes. Materials Research Bulletin, 2012, 47, 4071-4075.	2.7	51
12	Combinatorial Synthesis of Insoluble Oxide Library from Ultrafine/Nano Particle Suspension Using a Drop-on-Demand Inkjet Delivery System. ACS Combinatorial Science, 2004, 6, 699-702.	3.3	49
13	Site-selective luminescence of Bi3+ in the YBO3 host under vacuum ultraviolet excitation at low temperature. Journal of Luminescence, 2008, 128, 2027-2030.	1.5	47
14	Optimization of the Single-Phased White Phosphor of Li ₂ SrSiO ₄ : Eu ²⁺ , Ce ³⁺ for Light-Emitting Diodes by Using the Combinatorial Approach Assisted with the Taguchi Method. ACS Combinatorial Science, 2012, 14, 636-644.	3.8	47
15	High quantum-yield CdSe _{<i>x</i>} S _{1â^²<i>x</i>} /ZnS core/shell quantum dots for warm white light-emitting diodes with good color rendering. Nanotechnology, 2013, 24, 285201.	1.3	42
16	High temperature thermoelectric properties and energy transfer devices of Ca3Co4â^'xAgxO9 and Ca1â^'ySmyMnO3. Journal of Alloys and Compounds, 2011, 509, 8970-8977.	2.8	40
17	The effect of electron cloud expansion on the red luminescence of Sr4Al14O25:Mn4+ revealed by calculation of the Racah parameters. Journal of Alloys and Compounds, 2014, 613, 312-316.	2.8	39
18	Improvement of emission efficiency and color rendering of high-power LED by controlling size of phosphor particles and utilization of different phosphors. Microelectronics Reliability, 2012, 52, 900-904.	0.9	37

#	Article	IF	CITATIONS
19	A new path for the synthesis of high quantum efficiency narrow-band-emitting K2TiF6:Mn4+ phosphor for wide-gamut displays. Chemical Engineering Journal, 2021, 407, 127161.	6.6	33
20	The intermediate role of Gd3+ in energy transfer to produce light under VUV excitation. Journal of Luminescence, 2008, 128, 2048-2052.	1.5	32
21	Photoluminescence properties of Eu3+ and Bi3+ in YBO3 host under vacuum ultraviolet/ultraviolet excitation. Journal of Applied Physics, 2009, 105, 013513.	1.1	31
22	Lead-Free Perovskite Narrow-Bandgap Oxide Semiconductors of Rare-Earth Manganates. ACS Omega, 2020, 5, 8766-8776.	1.6	31
23	The site-selective excitation and the dynamical electron–lattice interaction on the luminescence of YBO3: Sb3+. Journal of Solid State Chemistry, 2013, 201, 229-236.	1.4	22
24	THE GREEN PHOSPHOR SrAl ₂ O ₄ : Eu ²⁺ , R ³⁺ (R = Y , Dy) AND ITS APPLICATION IN ALTERNATING CURRENT LIGHT-EMITTING DIODES. Functional Materials Letters, 2013, 06, 1350047.	0.7	21
25	Origin of the red luminescence in Sr3Al2O6:Eu phosphor—From the synergetic effects of Eu2+ and Eu3+. Journal of Rare Earths, 2017, 35, 127-134.	2.5	20
26	Reduced Local Symmetry in Lithium Compound Li ₂ SrSiO ₄ Distinguished by an Eu ³⁺ Spectroscopy Probe. Advanced Science, 2019, 6, 1802126.	5.6	20
27	New red phosphor (Y, Gd, Lu)BO3: Eu3+ for PDP applications. Journal of Rare Earths, 2009, 27, 312-315.	2.5	19
28	Structure and electrical properties of p-type twin ZnTe nanowires. Applied Physics A: Materials Science and Processing, 2011, 102, 469-475.	1.1	19
29	The site occupation and valence of Mn ions in the crystal lattice of Sr 4 Al 14 O 25 and its deep red emission for high color-rendering white light-emitting diodes. Materials Research Bulletin, 2014, 60, 604-611.	2.7	19
30	The energy transfer of Bi3+→ Eu3+and Bi3+→ Tb3+in YBO3host to produce light. Journal Physics D: Applied Physics, 2009, 42, 215104.	1.3	18
31	An intelligent approach to the discovery of luminescent materials using a combinatorial approach combined with Taguchi methodology. Luminescence, 2011, 26, 229-238.	1.5	18
32	Preparation, characterization and activity evaluation of heterojunction ZrTi2O6/TiO2 photocatalyst. Materials Chemistry and Physics, 2010, 124, 1057-1064.	2.0	17
33	The temperatureâ€sensitive luminescence of (Y,Gd)VO ₄ :Bi ³⁺ ,Eu ³⁺ and its application for stealth antiâ€counterfeiting. Physica Status Solidi - Rapid Research Letters, 2012, 6, 321-323.	1.2	16
34	Suppressing the phase transformation and enhancing the orange luminescence of (Sr,Ba)3SiO5:Eu2+ for application in white LEDs. Materials Letters, 2013, 106, 428-431.	1.3	16
35	The red luminescence of Sr4 Al14 O25 :Mn4+ enhanced by coupling with the SrAl2 O4 phase in the 3SrO · 5Al2 O3 system. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1791	-1798.	16
36	Energy Transfer in (Y[sub 0.65],Gd[sub 0.35])BO[sub 3]:Bi[sub 0.01][sup 3+],Eu[sub 0.04][sup 3+] under VUV Excitation. Journal of the Electrochemical Society, 2007, 154, J345.	1.3	14

#	Article	IF	CITATIONS
37	Optimization of Pr3+, Tb3+, and Sm3+ Co-Doped (Y0.65Gd0.35)BO3:Eu0.053+ VUV Phosphors through Combinatorial Approach. ACS Combinatorial Science, 2008, 10, 401-404.	3.3	14
38	Synthesis and nano-field-effect transistors of p-type Zn0.3Cd0.7Te nanoribbons. Materials Letters, 2011, 65, 1753-1755.	1.3	14
39	Synthesis and luminescence properties of Sr3–z(AlxSi1x)O5–xFx:zCe3+ phosphors. Journal of Rare Earths, 2013, 31, 665-668.	2.5	14
40	Luminescence and energy transfer in the Sb3+ and Gd3+ activated YBO3 phosphor. Journal of Luminescence, 2013, 143, 670-673.	1.5	13
41	The energy transfer in the Sb3+ and Eu3+ co-activated YBO3 phosphor and their white luminescence for deep ultraviolet LEDs application. Journal of Luminescence, 2014, 149, 144-149.	1.5	13
42	Synthesis and photoluminescence of the blue phosphor Sr3MgSi2O8:Eu2+ optimized with the Taguchi method for application in near ultraviolet excitable white light-emitting diodes. Journal of Luminescence, 2016, 169, 733-738.	1.5	13
43	Site occupancy and photoluminescence tuning of La ₃ Si _{6â^`x} Al _x N _{11â^`x/3} :Ce ³⁺ phosphors for high power white light-emitting diodes. CrystEngComm, 2017, 19, 2836-2843.	1.3	13
44	Formation of the amorphous phase in the carbothermal reduction and nitridation route to SrSi ₂ 0 ₂ N ₂ : Eu ²⁺ : a new understanding of the catalytic effect of carbon in the synthesis of Sr ₂ Si ₅ N ₈ : Eu ²⁺ for white LEDs. RSC Advances, 20	1.7)14, 4,	11
45	44317-44321. Nonvolatile modulation of electronic structure and correlative magnetism of L10-FePt films using significant strain induced by shape memory substrates. Scientific Reports, 2016, 6, 20199.	1.6	11
46	A third route to synthesis of green phosphor SrSi2O2N2: Eu2+ from SrO. Journal of Luminescence, 2021, 230, 117729.	1.5	11
47	Dataset of emission and excitation spectra, UV–vis absorption spectra, and XPS spectra of graphitic C3N4. Data in Brief, 2018, 21, 501-510.	0.5	10
48	The competitive mechanisms of nano-SiO2 and reaction temperature on phase transformation and Eu2+ site occupation in Sr2SiO4:Eu2+ phosphor. Journal of Alloys and Compounds, 2017, 728, 231-240.	2.8	9
49	Controlling the anomalous Hall effect by electric-field-induced piezo-strain in Fe40Pt60/(001)-Pb(Mg1/3Nb2/3)0.67Ti0.33O3 multiferroic heterostructures. Applied Physics Letters, 2018, 112, .	1.5	7
50	Co-Vacancy, Co _{1â^'x} S@C flower-like nanosheets derived from MOFs for high current density cycle performance and stable sodium-ion storage. New Journal of Chemistry, 2021, 45, 6865-6871.	1.4	7
51	High Color-Rendering-Index Hybrid White LEDs Employing CdSe/ZnS Core/Shell Quantum Dots. Journal of Nanoscience and Nanotechnology, 2016, 16, 670-676.	0.9	6
52	Thermoelectric properties of rapid hot pressed polycrystalline Ag _{1â^'<i>x</i>} Pb ₁₈ SbTe ₂₀ synthesized from doping PbTe nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 163-169.	0.8	5
53	Synthesis and X-ray responsivity of Zn0.75Cd0.25Te nanoribbons. Micro and Nano Letters, 2011, 6, 624.	0.6	4
54	Controlled nucleation and crystal growth through nano SiO2 for enhancing the orange luminescence of (Sr,Ba)3SiO5: Eu2+ in white LEDs application. Ceramics International, 2013, 39, 8565-8570.	2.3	4

#	Article	IF	CITATIONS
55	Converting electrical conductivity types in surface atomic-ligand exchanged PbS quantum dots via gate voltage tuning. Journal of Alloys and Compounds, 2017, 699, 866-873.	2.8	2
56	A NEW RED PHOSPHOR OF THE Mn ACTIVATED NON-STOICHIOMETRIC STRONTIUM ALUMINATE 3SrO•5Al2O FOR HIGH COLOR RENDERING WHITE LEDS. Functional Materials Letters, 2013, 06, 1350028.	³ 0.7	1
57	Controllable site occupation of Eu in intricate superstructure of perovskite Sr ₃ Al ₂ O ₆ : Eu, Dy, Li to produce red luminescence. Functional Materials Letters, 2018, 11, 1850012.	0.7	1
58	Applications of combinatorial approach to the investigation of optical functional materials. Science Bulletin, 2009, 54, 1836-1844.	4.3	0
59	Narrow-Bandgap Semiconductors of Perovskite Rare-Earth Orthoferrites (REFeO3). Current Chinese Science, 2021, 1, 438-452.	0.2	0