
Wanquan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6244906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid or solid? a biologically inspired concentrated suspension for protective coating. Chemical Engineering Journal, 2022, 428, 131793.	12.7	13
2	Enhanced Kevlar-based triboelectric nanogenerator with anti-impact and sensing performance towards wireless alarm system. Nano Energy, 2022, 91, 106657.	16.0	18
3	A high anti-impact STF/Ecoflex composite structure with a sensing capacity for wearable design. Composites Part B: Engineering, 2022, 233, 109656.	12.0	24
4	Spatially ensemble of polydopamine-protected-Au nanocrystals on Fe3O4@SiO2@Î ³ -AlOOH microflower for improving catalytic performance. Applied Surface Science, 2021, 543, 148750.	6.1	12
5	Functional Kevlar-Based Triboelectric Nanogenerator with Impact Energy-Harvesting Property for Power Source and Personal Safeguard. ACS Applied Materials & Interfaces, 2021, 13, 6575-6584.	8.0	25
6	Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property. Chemical Engineering Journal, 2021, 414, 128883.	12.7	65
7	A safeguarding and high temperature tolerant organogel electrolyte for flexible solid-state supercapacitors. Journal of Power Sources, 2021, 505, 230083.	7.8	13
8	Non-tensile piezoresistive sensor based on coaxial fiber with magnetoactive shell and conductive flax core. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106548.	7.6	19
9	Coaxial direct ink writing of shear stiffening gel/Ecoflex composite for customized insoles. Composites Part B: Engineering, 2021, 225, 109268.	12.0	10
10	Advanced triboelectric nanogenerator with multi-mode energy harvesting and anti-impact properties for smart glove and wearable e-textile. Nano Energy, 2020, 78, 105291.	16.0	35
11	Shear Stiffening Gels for Intelligent Anti-impact Applications. Cell Reports Physical Science, 2020, 1, 100266.	5.6	52
12	Highly Flexible Multilayered e-Skins for Thermal-Magnetic-Mechanical Triple Sensors and Intelligent Grippers. ACS Applied Materials & Interfaces, 2020, 12, 15675-15685.	8.0	34
13	A smart Kevlar-based triboelectric nanogenerator with enhanced anti-impact and self-powered sensing properties. Smart Materials and Structures, 2020, 29, 125007.	3.5	16
14	Colorimetric Sensing of Dopamine Based on Peroxidase-Like Activity of Gold Nanoparticles. Journal of Analytical Chemistry, 2019, 74, 679-685.	0.9	5
15	CNT/STF/Kevlar-based wearable electronic textile with excellent anti-impact and sensing performance. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105612.	7.6	70
16	Magnetic microspheres with polydopamine encapsulated ultra-small noble metal nanocrystals as mimetic enzymes for the colorimetric detection of H ₂ O ₂ and glucose. Journal of Materials Chemistry B, 2019, 7, 4568-4580.	5.8	20
17	A Hydrophobic, Self-Powered, Electromagnetic Shielding PVDF-Based Wearable Device for Human Body Monitoring and Protection. ACS Applied Materials & Interfaces, 2019, 11, 47340-47349.	8.0	78
18	Novel Safeguarding Tactile eâ€Skins for Monitoring Human Motion Based on SST/PDMS–AgNW–PET Hvbrid Structures. Advanced Functional Materials. 2018. 28. 1707538.	14.9	62

Wanquan Jiang

#	Article	IF	CITATIONS
19	Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Composites Part A: Applied Science and Manufacturing, 2018, 106, 82-90.	7.6	132
20	A liquid metal-based triboelectric nanogenerator as stretchable electronics for safeguarding and self-powered mechanosensing. Nano Energy, 2018, 53, 863-870.	16.0	63
21	General and Facile Method to Fabricate Yolk-like Structural Magnetic Nanocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 8274-8284.	6.7	24
22	Stress and Magnetic Field Bimode Detection Sensors Based on Flexible CI/CNTs–PDMS Sponges. ACS Applied Materials & Interfaces, 2018, 10, 30774-30784.	8.0	57
23	Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance. Soft Matter, 2017, 13, 2483-2491.	2.7	52
24	High performance polydopamine-functionalized mesoporous silica nanospheres for U(VI) removal. Applied Surface Science, 2017, 426, 1121-1132.	6.1	73
25	The normal stress of an electrorheological fluid in compression mode. RSC Advances, 2017, 7, 25855-25860.	3.6	8
26	PVP immobilized SiO2 nanospheres for high-performance shear thickening fluid. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	19
27	Dynamic behavior of magnetically responsive shear-stiffening gel under high strain rate. Composites Science and Technology, 2016, 127, 169-176.	7.8	90
28	A facile one-step method to synthesize SiO ₂ @polydopamine core–shell nanospheres for shear thickening fluid. RSC Advances, 2016, 6, 29279-29287.	3.6	51
29	Rod-like β-FeOOH@poly(dopamine)–Au–poly(dopamine) nanocatalysts with improved recyclable activities. Dalton Transactions, 2015, 44, 9538-9544.	3.3	25
30	Rate-dependent and self-healing conductive shear stiffening nanocomposite: a novel safe-guarding material with force sensitivity. Journal of Materials Chemistry A, 2015, 3, 19790-19799.	10.3	63
31	Dielectric relaxation effect on flow behavior of electrorheological fluids. Journal of Intelligent Material Systems and Structures, 2015, 26, 1141-1149.	2.5	9
32	Strain rate-induced phase transitions in an impact-hardening polymer composite. Applied Physics Letters, 2014, 104, .	3.3	50
33	Study of the particles' structure dependent rheological behavior for polymer nanospheres based shear thickening fluid. Journal of Colloid and Interface Science, 2014, 413, 8-16.	9.4	31
34	Multifunctional polymer composite with excellent shear stiffening performance and magnetorheological effect. Journal of Materials Chemistry C, 2014, 2, 7133-7140.	5.5	87
35	Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric. Journal of Composite Materials, 2014, 48, 641-657.	2.4	110
36	Asymmetric PSt-EA/Ni-Silicate hollow microsphere with a hierarchical porous shell. Journal of Materials Chemistry B, 2013, 1, 1414.	5.8	10

Wanquan Jiang

#	Article	IF	CITATIONS
37	Stress pulse attenuation in shear thickening fluid. Applied Physics Letters, 2013, 102, .	3.3	46
38	Silicon carbideâ€strengthened magnetorheological elastomer: Preparation and mechanical property. Polymer Engineering and Science, 2013, 53, 2615-2623.	3.1	23
39	Influence of surfactants on shear-thickening behavior in concentrated polymer dispersions. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	30
40	Superparamagnetic Ag@Fe3O4 core–shell nanospheres: fabrication, characterization and application as reusable nanocatalysts. Dalton Transactions, 2012, 41, 4594.	3.3	69
41	An experimental investigation on the normal force behavior of magnetorheological suspensions. Korea Australia Rheology Journal, 2012, 24, 171-180.	1.7	17
42	Oscillatory normal forces of magnetorheological fluids. Soft Matter, 2012, 8, 5256.	2.7	26
43	Controllable synthesis of hierarchical strontium molybdate by sonochemical method. Crystal Research and Technology, 2012, 47, 997-1003.	1.3	15
44	Normal forces of magnetorheological fluids under oscillatory shear. Journal of Magnetism and Magnetic Materials, 2012, 324, 1218-1224.	2.3	30
45	Hierarchical core/shell Fe3O4@SiO2@γ-AlOOH@Au micro/nanoflowers for protein immobilization. Chemical Communications, 2011, 47, 2514.	4.1	56
46	Magnetic recyclable Ag catalysts with a hierarchical nanostructure. Nanotechnology, 2011, 22, 375701.	2.6	26
47	Immobilization of Pd nanocatalysts on magnetic rattles and their catalytic property. Dalton Transactions, 2011, 40, 7827.	3.3	32
48	Dimorphic magnetorheological fluid with improved rheological properties. Journal of Magnetism and Magnetic Materials, 2011, 323, 3246-3250.	2.3	63
49	Yolkâ€like Micro/Nanoparticles with Superparamagnetic Iron Oxide Cores and Hierarchical Nickel Silicate Shells. Advanced Functional Materials, 2011, 21, 1902-1909.	14.9	110
50	Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures. Rheologica Acta, 2010, 49, 1157-1163.	2.4	78
51	Poly(methyl methacrylate)â€coated carbonyl iron particles and their magnetorheological characteristics. Polymer International, 2010, 59, 879-883.	3.1	41
52	Sonochemical synthesis and characterization of magnetic separable Fe ₃ O ₄ –TiO ₂ nanocomposites and their catalytic properties. International Journal of Smart and Nano Materials, 2010, 1, 278-287.	4.2	32
53	Sonochemical synthesis and characterization of magnetic separable Fe3O4/Ag composites and its catalytic properties. Journal of Alloys and Compounds, 2010, 508, 400-405.	5.5	40
54	Structure and electrorheological properties of nanoporous BaTiO3 crystalline powders prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2009, 52, 8-14.	2.4	25

WANQUAN JIANG

#	Article	IF	CITATIONS
55	Fabrication and characterization of photocatalytic activity of Fe3O4-doped CdS hollow spheres. Journal of Physics and Chemistry of Solids, 2009, 70, 782-786.	4.0	8
56	A FeCO3Precursor-Based Route to Microsized Peanutlike Fe3O4. Crystal Growth and Design, 2007, 7, 430-434.	3.0	69
57	Preparation of barium strontium titanate Ba1â^'Sr TiO3 (0 ⩽x⩽ 0.2) single-crystal nanorods by a novel combined method. Ultrasonics Sonochemistry, 2007, 14, 208-212.	8.2	22
58	Preparation and Characterization of Nickel–poly(St-co-AA) Composite Nanoparticles. Journal of Nanoparticle Research, 1999, 1, 491-494.	1.9	5