Mala Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6244464/publications.pdf Version: 2024-02-01

MALA DAS

#	Article	IF	CITATIONS
1	Discrimination of neutron and gamma ray induced nucleation events at high frequency in R134a superheated emulsion. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1025, 166186.	1.6	3
2	The background study at 555 m deep underground with superheated emulsion detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1008, 165450.	1.6	1
3	FPGA-based multi-channel data acquisition system for Superheated Emulsion Detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1009, 165457.	1.6	6
4	The adequacy of energy deposition over thermodynamic behaviour in explaining the acoustic energy in bubble nucleation of superheated droplets. Radiation Physics and Chemistry, 2021, 187, 109578.	2.8	3
5	Probing low-mass WIMP candidates of dark matter with tetrafluoroethane superheated liquid detectors. Physical Review D, 2020, 101, .	4.7	3
6	The threshold of gamma-ray induced bubble nucleation in superheated emulsion. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 931, 44-51.	1.6	8
7	Detection of bubble nucleation event in superheated drop detector by the pressure sensor. Pramana - Journal of Physics, 2017, 88, 1.	1.8	1
8	Radiation linear energy transfer and drop size dependence of the low frequency signal from tiny superheated droplets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 837, 92-98.	1.6	11
9	Searching for universal behaviour in superheated droplet detector with effective recoil nuclei. Pramana - Journal of Physics, 2013, 80, 983-994.	1.8	2
10	Study of low frequency acoustic signals from superheated droplet detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 729, 182-187.	1.6	16
11	Nucleation efficiency of R134a as a sensitive liquid for superheated drop emulsion detector. Pramana - Journal of Physics, 2010, 75, 675-682.	1.8	5
12	Neutron-gamma discrimination by pulse analysis with superheated drop detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622, 196-199.	1.6	13
13	Threshold ss of superheated emulsion detector to heavy ions. Radiation Measurements, 2008, 43, S62-S64.	1.4	1
14	An active drop counting device using condenser microphone for superheated emulsion detector. Review of Scientific Instruments, 2008, 79, 113301.	1.3	7
15	Superheated emulsions in neutron spectrometry by varying ambient pressure. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 536, 123-130.	1.6	12
16	Threshold temperatures of heavy ion-induced nucleation in superheated emulsions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543, 570-576.	1.6	15
17	Application of superheated emulsion in neutron spectrometry at 45MeV electron linac. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 34-41.	1.6	8
18	Estimation of nucleation parameter for neutron-induced nucleation in superheated emulsion. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 531, 577-584.	1.6	15

Mala Das

#	Article	IF	CITATIONS
19	Use of basic principle of nucleation in determining temperature–threshold neutron energy relationship in superheated emulsions. Radiation Physics and Chemistry, 2003, 66, 323-328.	2.8	14
20	Superheated drops of R114—as a neutron spectrometer. Radiation Physics and Chemistry, 2001, 61, 447-448.	2.8	7
21	Threshold temperature for \hat{I}^3 -ray detection in superheated drop detector. Radiation Physics and Chemistry, 2001, 61, 509-510.	2.8	12
22	A sensitive neutron dosimeter using superheated liquid. Applied Radiation and Isotopes, 2000, 53, 759-763.	1.5	9
23	Superheated drop as a neutron spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 452, 273-279.	1.6	34
24	Photon sensitivity of superheated drop at room temperature. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 455, 782-783.	1.6	5
25	How high can the temperature of a liquid be raised without boiling?. Physical Review E, 2000, 62, 5843-5846.	2.1	15
26	Efficiency of neutron detection of superheated drops of Freon-22. Radiation Measurements, 1999, 30, 35-39.	1.4	10