Xiaobo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6244135/publications.pdf

Version: 2024-02-01

		567281	839539
19	777	15	18
papers	citations	h-index	g-index
19	19	19	1465
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Effective active sites of triangular Mo-S Nano-catalysts from first-principle calculations. Surfaces and Interfaces, 2021, 26, 101373.	3.0	1
2	Unveiling the electrochromic mechanism of Prussian Blue by electronic transition analysis. Nano Energy, 2020, 78, 105148.	16.0	39
3	Ni(OH) < sub > 2 < /sub > based dual-mode memristor. Semiconductor Science and Technology, 2020, 35, 055030.	2.0	1
4	Engineering Surface Structure and Defect Chemistry of Nanoscale Cubic Co ₃ O ₄ Crystallites for Enhanced Lithium and Sodium Storage. ACS Applied Nano Materials, 2020, 3, 3892-3903.	5.0	32
5	Emergent superconductivity in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NiTe</mml:mi><mml:mn>2<td>.ms.2≥/mm</td><td>าไ:เลรนb></td></mml:mn></mml:msub></mml:math>	.m s .2≥/mm	าไ:เลรนb>
6	Electron Density Modulation of Metallic MoO ₂ by Ni Doping to Produce Excellent Hydrogen Evolution and Oxidation Activities in Acid. ACS Energy Letters, 2020, 5, 1908-1915.	17.4	110
7	Uncovering the Surface and Phase Effect of Molybdenum Carbides on Hydrogen Evolution: A First-Principles Study. Journal of Physical Chemistry C, 2019, 123, 21878-21887.	3.1	23
8	Electrochemical Hydrogen Evolution at the Interface of Monolayer VS ₂ and Water from First-Principles Calculations. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2944-2949.	8.0	20
9	Computational Screening of Electrocatalytic Materials for Hydrogen Evolution: Platinum Monolayer on Transitional Metals. Journal of Physical Chemistry C, 2019, 123, 495-503.	3.1	15
10	Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides. Advanced Materials, 2018, 30, e1705318.	21.0	178
11	Phonon Polaritons: Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides (Adv. Mater. 13/2018). Advanced Materials, 2018, 30, 1870091.	21.0	1
12	Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS ₂ . Chemistry of Materials, 2018, 30, 5404-5411.	6.7	33
13	Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16071-16077.	8.0	69
14	Tuning the hydrogen evolution activity of MS $<$ sub $>$ 2 $<$ /sub $>$ (M = Mo or Nb) monolayers by strain engineering. Physical Chemistry Chemical Physics, 2016, 18, 9388-9395.	2.8	60
15	Origin of hydrogen evolution activity on MS ₂ (M = Mo or Nb) monolayers. Journal of Materials Chemistry A, 2015, 3, 18898-18905.	10.3	30
16	Density functional studies of zirconia with different crystal phases for oxygen reduction reaction. RSC Advances, 2015, 5, 85122-85127.	3.6	11
17	Critical electronic structures controlling phase transitions induced by lithium ion intercalation in molybdenum disulphide. Science Bulletin, 2013, 58, 1632-1641.	1.7	44
18	Electrochemical cycling reversibility of LiMoS ₂ using first-principles calculations. Applied Physics Letters, 2012, 100, 263901.	3.3	23

XIAOBO CHEN

#	Article	IF	CITATIONS
19	Critical Role of Dopant Location for P-Doped Si Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 661-666.	3.1	50