Changhong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6243813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A survey of hybrid energy devices based on supercapacitors. Green Energy and Environment, 2023, 8, 972-988.	4.7	33
2	Toy-blocks-inspired programmable supercapacitors with high energy density. Chemical Engineering Journal, 2022, 445, 136788.	6.6	7
3	A new type of flexible energy harvesting device working with micro water droplets achieving high output. Journal of Materials Chemistry A, 2021, 9, 23555-23562.	5.2	7
4	Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions. Nano Research, 2021, 14, 2456.	5.8	9
5	Advances of CNT-based systems in thermal management. Nano Research, 2021, 14, 2471-2490.	5.8	34
6	Investigation of Dropwise Condensation on a Super-Aligned Carbon Nanotube Mesh-Coated Surface. Langmuir, 2021, 37, 2629-2638.	1.6	2
7	"Sweat-chargeable―on-skin supercapacitors for practical wearable energy applications. Energy Storage Materials, 2021, 38, 9-16.	9.5	29
8	Nanostructured Co ₃ O ₄ Asymmetrically Deposited on a Single Carbon Cloth for an All-Solid-State Integrated Hybrid Device with Reversible Zinc-Air High-Energy Conversion and Asymmetric Supercapacitive High-Power Delivery. Energy & Fuels, 2021, 35, 12706-12717.	2.5	8
9	Tailorable Capacitive Tactile Sensor Based on Stretchable and Dissolvable Porous Silver Nanowire/Polyvinyl Alcohol Nanocomposite Hydrogel for Wearable Human Motion Detection. Advanced Materials Interfaces, 2021, 8, 2100998.	1.9	26
10	Tailorable Capacitive Tactile Sensor Based on Stretchable and Dissolvable Porous Silver Nanowire/Polyvinyl Alcohol Nanocomposite Hydrogel for Wearable Human Motion Detection (Adv.) Tj ETQq0 0	0 rgBJ /Ov	verl o ck 10 Tf :
11	Transparent actuator made by highly-oriented carbon nanotube film for bio-inspired optical systems. Nanotechnology, 2020, 31, 065501.	1.3	6
12	Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films. Applied Thermal Engineering, 2020, 166, 114623.	3.0	22
13	Fast-response, agile and functional soft actuators based on highly-oriented carbon nanotube thin films. Nanotechnology, 2020, 31, 085501.	1.3	7
14	Energy Harvesting and Storage by Water Infiltration of Eggshell Membrane. Energy Technology, 2020, 8, 1901192.	1.8	6
15	Hard Carbon Nanotube Sponges for Highly Efficient Cooling <i>via</i> Moisture Absorption–Desorption Process. ACS Nano, 2020, 14, 14091-14099.	7.3	31
16	Enhanced light transmission of carbon nanotube film by ultrathin oxide coatings. AIP Advances, 2020, 10, 075304.	0.6	1
17	Structural Effects on a Sandwich-Like Hydrocapacitor and Its Mechanism Research. ACS Applied Energy Materials, 2020, 3, 9468-9476.	2.5	7
18	Laser-Graving-Assisted Fabrication of Foldable Supercapacitors for On-Chip Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 42172-42178.	4.0	9

CHANGHONG LIU

#	Article	IF	CITATIONS
19	A super compact self-powered device based on paper-like supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3642-3647.	5.2	22
20	A universal <i>in situ</i> strategy for charging supercapacitors. Journal of Materials Chemistry A, 2019, 7, 15131-15136.	5.2	13
21	Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon, 2019, 148, 1-8.	5.4	113
22	A moisture induced self-charging device for energy harvesting and storage. Nano Energy, 2019, 60, 371-376.	8.2	69
23	The influence of charging and discharging on the thermal properties of a carbon nanotube/polyaniline nanocomposite electrode. RSC Advances, 2019, 9, 7629-7634.	1.7	4
24	High Waterâ€Absorbent and Phaseâ€Change Heat Dissipation Materials Based on Superâ€Aligned Crossâ€Stack CNT Films. Advanced Engineering Materials, 2019, 21, 1801216.	1.6	7
25	Gravity-Induced Self-Charging in Carbon Nanotube/Polymer Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 5249-5254.	1.5	21
26	Grapheneâ€Based Actuator with Integrated‣ensing Function. Advanced Functional Materials, 2019, 29, 1806057.	7.8	85
27	Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials. Nano Letters, 2018, 18, 1770-1776.	4.5	34
28	Electrical potential induced switchable wettability of super-aligned carbon nanotube films. Applied Surface Science, 2018, 427, 628-635.	3.1	13
29	Hydrocapacitor for Harvesting and Storing Energy from Water Movement. ACS Applied Materials & Interfaces, 2018, 10, 35273-35280.	4.0	26
30	The adsorption state and the evolution of field emission properties of graphene edges at different temperatures. RSC Advances, 2018, 8, 31830-31834.	1.7	4
31	Enhancement of evaporative heat transfer on carbon nanotube sponges by electric field reinforced wettability. Applied Surface Science, 2018, 454, 262-269.	3.1	18
32	Transparency-switchable actuator based on aligned carbon nanotube and paraffin-polydimethylsiloxane composite. Carbon, 2017, 116, 625-632.	5.4	43
33	Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9, 3133-3139.	2.8	24
34	A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge. Journal of Materials Chemistry A, 2017, 5, 23078-23084.	5.2	68
35	Deformation Effect on the Electrical Properties of a Flexible Organic Semiconductor composed of Poly(dimethylsiloxane) and Multiwalled Carbon Nanotubes. Advanced Electronic Materials, 2016, 2, 1500421.	2.6	0
36	Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes. Nano Letters, 2016, 16, 6378-6382.	4.5	18

CHANGHONG LIU

#	Article	IF	CITATIONS
37	Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencilâ€onâ€Paper Method. Advanced Functional Materials, 2016, 26, 7244-7253.	7.8	145
38	Excellent heat dissipation properties of the super-aligned carbon nanotube films. RSC Advances, 2016, 6, 61686-61694.	1.7	42
39	Actuators: Multiresponsive Bidirectional Bending Actuators Fabricated by a Pencilâ€onâ€Paper Method (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7368-7368.	7.8	5
40	Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices. ACS Applied Materials & Interfaces, 2016, 8, 31202-31211.	4.0	32
41	Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites. Nanoscale, 2016, 8, 6877-6883.	2.8	71
42	Large-Strain, Multiform Movements from Designable Electrothermal Actuators Based on Large Highly Anisotropic Carbon Nanotube Sheets. ACS Nano, 2015, 9, 409-418.	7.3	161
43	A new type of secondary hybrid battery showing excellent performances. Nano Energy, 2015, 12, 486-493.	8.2	29
44	A heat flux modulator from carbon nanotubes. Nanoscale, 2015, 7, 13759-13764.	2.8	6
45	A demo solar thermoelectric conversion device based on Bi2Te3 and carbon nanotubes. Solar Energy Materials and Solar Cells, 2015, 141, 331-336.	3.0	9
46	A Polymer Supercapacitor Capable of Self-Charging under Light Illumination. Journal of Physical Chemistry C, 2015, 119, 8488-8491.	1.5	42
47	Schottky contact of an artificial polymer semiconductor composed of poly(dimethylsiloxane) and multiwall carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 19539-19544.	5.2	7
48	Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application. ACS Nano, 2015, 9, 12189-12196.	7.3	126
49	Modified secondary lithium metal batteries with the polyaniline–carbon nanotube composite buffer layer. Chemical Communications, 2015, 51, 322-325.	2.2	38
50	Efficient Natural-Convective Heat Transfer Properties of Carbon Nanotube Sheets and Their Roles on the Thermal Dissipation. ACS Applied Materials & Interfaces, 2014, 6, 3075-3080.	4.0	26
51	Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a "directly-inserted―method. RSC Advances, 2014, 4, 26378-26382.	1.7	24
52	Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes. Scientific Reports, 2013, 3, 2549.	1.6	23
53	High-Density Carbon Nanotube Buckypapers with Superior Transport and Mechanical Properties. Nano Letters, 2012, 12, 4848-4852.	4.5	170
54	Well-Constructed CNT Mesh/PANI Nanoporous Electrode and Its Thickness Effect on the Supercapacitor Properties. Journal of Physical Chemistry C, 2012, 116, 26185-26189.	1.5	66

CHANGHONG LIU

#	Article	IF	CITATIONS
55	Temperature Dependence of Thermal Boundary Resistances between Multiwalled Carbon Nanotubes and Some Typical Counterpart Materials. ACS Nano, 2012, 6, 3057-3062.	7.3	14
56	High-Performance, Low-Voltage, and Easy-Operable Bending Actuator Based on Aligned Carbon Nanotube/Polymer Composites. ACS Nano, 2011, 5, 1588-1593.	7.3	191
57	Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications. Advanced Materials, 2011, 23, 1154-1161.	11.1	391
58	A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks. Advanced Materials, 2010, 22, 535-539.	11.1	437
59	High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology, 2010, 21, 345701.	1.3	85
60	A Demo Opto-electronic Power Source Based on Single-Walled Carbon Nanotube Sheets. ACS Nano, 2010, 4, 4701-4706.	7.3	34
61	Highly Flexible and All-Solid-State Paperlike Polymer Supercapacitors. Nano Letters, 2010, 10, 4025-4031.	4.5	1,115
62	Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures. Applied Physics Letters, 2009, 94, .	1.5	62
63	Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochemistry Communications, 2009, 11, 186-189.	2.3	302
64	Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology, 2009, 20, 145702.	1.3	157
65	Thermal Boundary Resistances of Carbon Nanotubes in Contact with Metals and Polymers. Nano Letters, 2009, 9, 3805-3809.	4.5	86
66	Catalyzed Filling of Carbon Nanotube Array with Graphite and the Thermal Properties of the Composites. Journal of Physical Chemistry C, 2008, 112, 5840-5842.	1.5	6
67	Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 2008, 19, 075609.	1.3	282
68	Machining Carbon Nanotubes into Uniform Slices. Journal of Nanoscience and Nanotechnology, 2007, 7, 4473-4477.	0.9	4