
Graham Aw Rook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6243742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques, 2004, 37, 112-119.	0.8	838
2	Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nature Medicine, 2002, 8, 625-629.	15.2	495
3	Give us this day our daily germs. Trends in Immunology, 1998, 19, 113-116.	7.5	378
4	Tryptophan metabolism in the central nervous system: medical implications. Expert Reviews in Molecular Medicine, 2006, 8, 1-27.	1.6	349
5	Hygiene Hypothesis and Autoimmune Diseases. Clinical Reviews in Allergy and Immunology, 2012, 42, 5-15.	2.9	323
6	Hormones, peripherally activated prohormones and regulation of the Th1/Th2 balance. Trends in Immunology, 1994, 15, 301-303.	7.5	278
7	Microbes, immunoregulation, and the gut. Gut, 2005, 54, 317-320.	6.1	276
8	Mechanisms of Disease: the hygiene hypothesis revisited. Nature Reviews Gastroenterology & Hepatology, 2006, 3, 275-284.	1.7	263
9	Review series on helminths, immune modulation and the hygiene hypothesis: The broader implications of the hygiene hypothesis. Immunology, 2009, 126, 3-11.	2.0	254
10	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Darwinian medicine and the â€~hygiene' or â€~old friends' hypothesis. Clinical and Experimental Immunology, 2010 70-79.), 160,	247
11	The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 2018, 627, 1018-1038.	3.9	244
12	Give us this day our daily germs. Trends in Immunology, 1998, 19, 113-6.	7.5	225
13	A comparative analysis of disease-associated changes in the galactosylation of serum IgC. Journal of Autoimmunity, 1989, 2, 101-114.	3.0	213
14	Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Seminars in Immunopathology, 2004, 25, 237-255.	4.0	212
15	Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspectives in Public Health, 2016, 136, 213-224.	0.8	206
16	Evolution, human-microbe interactions, and life history plasticity. Lancet, The, 2017, 390, 521-530.	6.3	178
17	Recognition of Stage-Specific Mycobacterial Antigens Differentiates between Acute and Latent Infections with Mycobacterium tuberculosis. Vaccine Journal, 2006, 13, 179-186.	3.2	174
18	IL-4 in tuberculosis: implications for vaccine design. Trends in Immunology, 2004, 25, 483-488.	2.9	167

#	Article	IF	CITATIONS
19	Microbial â€~old friends', immunoregulation and socioeconomic status. Clinical and Experimental Immunology, 2014, 177, 1-12.	1.1	165
20	Healthy Individuals That Control a Latent Infection with <i>Mycobacterium tuberculosis</i> Express High Levels of Th1 Cytokines and the IL-4 Antagonist IL-4δ2. Journal of Immunology, 2004, 172, 6938-6943.	0.4	160
21	Th2 Cytokines in Susceptibility to Tuberculosis. Current Molecular Medicine, 2007, 7, 327-337.	0.6	159
22	Immune responses to tuberculosis in developing countries: implications for new vaccines. Nature Reviews Immunology, 2005, 5, 661-667.	10.6	149
23	Gulf War syndrome: is it due to a systemic shift in cytokine balance towards a Th2 profile?. Lancet, The, 1997, 349, 1831-1833.	6.3	146
24	Long-Term Protective and Antigen-Specific Effect of Heat-Killed <i>Mycobacterium vaccae</i> in a Murine Model of Allergic Pulmonary Inflammation. Journal of Immunology, 2002, 169, 1492-1499.	0.4	113
25	Performance of a T-cell-based diagnostic test for tuberculosis infection in HIV-infected individuals is independent of CD4 cell count. Aids, 2005, 19, 2038-2041.	1.0	112
26	The hygiene hypothesis and psychiatric disorders. Trends in Immunology, 2008, 29, 150-158.	2.9	110
27	The molecular mechanisms of severe typhoid fever. Trends in Microbiology, 2001, 9, 316-320.	3.5	109
28	Utility of the antigen-specific interferon-?? assay for the management of tuberculosis. Current Opinion in Pulmonary Medicine, 2005, 11, 195-202.	1.2	109
29	Innate immune responses to mycobacteria and the downregulation of atopic responses. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 337-342.	1.1	106
30	The role of IgG glycoforms in the pathogenesis of rheumatoid arthritis. Seminars in Immunopathology, 1988, 10, 231-249.	4.0	102
31	Extrapulmonary Locations of Mycobacterium tuberculosis DNA During Latent Infection. Journal of Infectious Diseases, 2012, 206, 1194-1205.	1.9	102
32	The hygiene hypothesis and the increasing prevalence of chronic inflammatory disorders. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 1072-1074.	0.7	101
33	Helsinki alert of biodiversity and health. Annals of Medicine, 2015, 47, 218-225.	1.5	95
34	Pulmonary tuberculosis in BALB/c mice with non-functional IL-4 genes: changes in the inflammatory effects of TNF-α and in the regulation of fibrosis. European Journal of Immunology, 2004, 34, 174-183.	1.6	86
35	Infection, immunoregulation, and cancer. Immunological Reviews, 2011, 240, 141-159.	2.8	85
36	Different screening strategies (single or dual) for the diagnosis of suspected latent tuberculosis: a cost effectiveness analysis. BMC Pulmonary Medicine, 2010, 10, 7.	0.8	79

#	Article	IF	CITATIONS
37	Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Research, 2015, 1617, 47-62.	1.1	78
38	The biological activity of human monoclonal IgG anti-D is reduced by β-galactosidase treatment. Human Antibodies, 1995, 6, 82-88.	0.6	67
39	Glucocorticoids and immune function. Best Practice and Research in Clinical Endocrinology and Metabolism, 1999, 13, 567-581.	2.2	63
40	Do successful tuberculosis vaccines need to be immunoregulatory rather than merely Th1-boosting?. Vaccine, 2005, 23, 2115-2120.	1.7	62
41	The role of oil and agalactosyl IgG in the induction of arthritis in rodent models. European Journal of Immunology, 1991, 21, 1027-1032.	1.6	58
42	Ex Vivo Cytokine mRNA Levels Correlate with Changing Clinical Status of Ethiopian TB Patients and their Contacts Over Time. PLoS ONE, 2008, 3, e1522.	1.1	52
43	Effect of sample handling on analysis of cytokine responses to Mycobacterium tuberculosis in clinical samples using ELISA, ELISPOT and quantitative PCR. Journal of Immunological Methods, 2005, 298, 129-141.	0.6	51
44	Hygiene and Other Early Childhood Influences on the Subsequent Function of the Immune System. Digestive Diseases, 2011, 29, 144-153.	0.8	49
45	TH1/TH2 switching and loss of CD4+ T cells in chronic infections: an immunoendocrinological hypothesis not exclusive to HIV. Trends in Immunology, 1993, 14, 568-569.	7.5	48
46	Immunotherapeutics for Tuberculosis in Experimental Animals: Is There a Common Pathway Activated by Effective Protocols?. Journal of Infectious Diseases, 2007, 196, 191-198.	1.9	45
47	The importance of models of infection in the study of disease resistance. Trends in Microbiology, 2002, 10, s38-s46.	3.5	43
48	<i>FOXP3</i> gene expression in a tuberculosis case contact study. Clinical and Experimental Immunology, 2007, 149, 117-122.	1.1	43
49	Advances in the immunopathogenesis of pulmonary tuberculosis. Current Opinion in Pulmonary Medicine, 2001, 7, 116-123.	1.2	41
50	Old friends for breakfast. Clinical and Experimental Allergy, 2005, 35, 841-842.	1.4	41
51	Variation in Gamma Interferon Responses to Different Infecting Strains of <i>Mycobacterium tuberculosis</i> in Acid-Fast Bacillus Smear-Positive Patients and Household Contacts in Antananarivo, Madagascar. Vaccine Journal, 2010, 17, 1094-1103.	3.2	41
52	Immune systems in developed and developing countries; implications for the design of vaccines that will work where BCG does not. Tuberculosis, 2006, 86, 152-162.	0.8	40
53	The 6-Kilodalton Early Secreted Antigenic Target-Responsive, Asymptomatic Contacts of Tuberculosis Patients Express Elevated Levels of Interleukin-4 and Reduced Levels of Gamma Interferon. Infection and Immunity, 2006, 74, 2817-2822.	1.0	39
54	Lymphocytes in neuroprotection, cognition and emotion: Is intolerance really the answer?. Brain, Behavior, and Immunity, 2011, 25, 591-601.	2.0	39

#	Article	IF	CITATIONS
55	Modulation of Cell Death byM. tuberculosisas a Strategy for Pathogen Survival. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	38
56	Current concepts in chronic inflammatory diseases: Interactions between microbes, cellular metabolism, and inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 47-56.	1.5	35
57	Can we vaccinate against depression?. Drug Discovery Today, 2012, 17, 451-458.	3.2	34
58	RELATIONSHIP BETWEEN INTERLEUKIN 6, AGALACTOSYL IgG AND PRISTANE-INDUCED ARTHRITIS. Autoimmunity, 1992, 11, 247-254.	1.2	33
59	Bacterial vaccines for the treatment of multiple sclerosis and other autoimmune diseases. Trends in Immunology, 2000, 21, 503-508.	7.5	33
60	Treatment with BB-94, a broad spectrum inhibitor of zinc-dependent metalloproteinases, causes deviation of the cytokine profile towards Type-2 in experimental pulmonary tuberculosis in Balb/c mice. International Journal of Experimental Pathology, 2001, 81, 199-209.	0.6	32
61	Mycobacteria and rheumatoid arthritis. Arthritis and Rheumatism, 1990, 33, 431-435.	6.7	30
62	On the interaction between agalactosyl IgG and Fcγ receptors. European Journal of Immunology, 1996, 26, 1404-1407.	1.6	29
63	DC Priming by M. vaccae Inhibits Th2 Responses in Contrast to Specific TLR2 Priming and Is Associated with Selective Activation of the CREB Pathway. PLoS ONE, 2011, 6, e18346.	1.1	29
64	T Cell Helper Types and Endocrines in the Regulation of Tissue-Damaging Mechanisms in Tuberculosis. Immunobiology, 1994, 191, 478-492.	0.8	28
65	Can nerve damage disrupt neuroendocrine immune homeostasis? Leprosy as a case in point. Trends in Immunology, 2002, 23, 18-22.	2.9	28
66	Clean living increases more than just atopic disease. Trends in Immunology, 2000, 21, 249.	7.5	27
67	Mycobacteria and allergies. Immunobiology, 2007, 212, 461-473.	0.8	27
68	Tuberculosis Due to High-Dose Challenge in Partially Immune Individuals: A Problem for Vaccination?. Journal of Infectious Diseases, 2009, 199, 613-618.	1.9	27
69	Expression of a novel cytokine, IL-4delta2, in HIV and HIV–tuberculosis co-infection. Aids, 2005, 19, 1601-1606.	1.0	25
70	The protective effect of immunoglobulin in murine tuberculosis is dependent on IgG glycosylation. Pathogens and Disease, 2013, 69, 176-183.	0.8	24
71	Expression of apoptosisâ€related genes in an Ethiopian cohort study correlates with tuberculosis clinical status. European Journal of Immunology, 2010, 40, 291-301.	1.6	22
72	Pathogenetic role, in human and murine tuberculosis, of changes in the peripheral metabolism of glucocorticoids and antiglucocorticoids. Psychoneuroendocrinology, 1997, 22, S109-S113.	1.3	20

#	Article	IF	CITATIONS
73	Progress and hindrances in tuberculosis vaccine development. Lancet, The, 2006, 367, 947-949.	6.3	19
74	The stability of mRNA encoding IL-4 is increased in pulmonary tuberculosis, while stability of mRNA encoding the antagonistic splice variant, IL-4δ2, is not. Tuberculosis, 2007, 87, 237-241.	0.8	18
75	Tumours and Coley's toxins. Nature, 1992, 357, 545-545.	13.7	17
76	New meanings for an old word: adjuvanticity, cytokines and T cells. Trends in Immunology, 1993, 14, 95-96.	7.5	17
77	CCL2, CCL18 and sIL-4R in renal, meningeal and pulmonary TB; a 2 year study of patients and contacts. Tuberculosis, 2011, 91, 140-145.	0.8	15
78	Immunotherapy with mycobacteria. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 481-486.	1.1	13
79	The pathogen recognition sensor, NOD2, is variably expressed in patients with pulmonary tuberculosis. BMC Infectious Diseases, 2007, 7, 96.	1.3	12
80	Pathways Underlying Afferent Signaling of Bronchopulmonary Immune Activation to the Central Nervous System. Chemical Immunology and Allergy, 2012, 98, 118-141.	1.7	12
81	HLA-DR4, mycobacteria, heat-shock proteins, and rheumatoid arthritis. Arthritis and Rheumatism, 1992, 35, 1409-1412.	6.7	11
82	Cortisol metabolism, cortisol sensitivity and the pathogenesis of leprosy reactions. Tropical Medicine and International Health, 1999, 4, 493-498.	1.0	11
83	Microbial exposures that establish immunoregulation are compatible with targeted hygiene. Journal of Allergy and Clinical Immunology, 2021, 148, 33-39.	1.5	10
84	Interferon gamma assays for tuberculosis. Lancet Infectious Diseases, The, 2005, 5, 324-325.	4.6	9
85	The Changing Microbial Environment and Chronic Inflammatory Disorders. Allergy, Asthma and Clinical Immunology, 2008, 4, 117.	0.9	7
86	Dangers of therapeutic manipulation of the Th1–Th2 balance. Trends in Immunology, 2002, 23, 127-128.	2.9	5
87	Lost food narratives canÂgrow human health inÂcities. Frontiers in Ecology and the Environment, 2018, 16, 560-562.	1.9	5
88	Peripheral T Cell Interferon-Î ³ Responses and Latent Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 97-98.	2.5	5
89	Crohn's disease and MAP. Lancet, The, 2004, 364, 2178.	6.3	4
90	Phage display of functional αβ single-chain T-cell receptor molecules specific for CD1b:Ac2SGL complexes from Mycobacterium tuberculosis-infected cells. BMC Immunology, 2013, 14, S2.	0.9	4

#	Article	IF	CITATIONS
91	Cytokine analysis at the single cell level and lymphoproliferative responses to mycobacterial antigens in HIV-1 patients with successful virologic response to potent antiretrovirals. Journal of Clinical Immunology, 2000, 20, 458-465.	2.0	3
92	The TGF-β1 paradox in asthma. Trends in Immunology, 2001, 22, 299-300.	2.9	3
93	Childhood Microbial Experience, Immunoregulation, Inflammation, and Adult Susceptibility to Psychosocial Stressors and Depression. , 2018, , 17-44.		3
94	The â€~Old Friends' hypothesis; how early contact with certain microorganisms may influence immunoregulatory circuits. , 2005, , 183-194.		3
95	Steroid Metabolism and Immunity. BioDrugs, 1997, 8, 157-163.	2.2	2
96	Endocrine and cytokine responses in humans with pulmonary tuberculosis. Brain, Behavior, and Immunity, 2007, 21, 169-170.	2.0	2
97	Aetiology of tuberculids. Lancet, The, 1993, 341, 565-566.	6.3	1
98	Glycosylation of Immunoglobulins. BioDrugs, 1994, 1, 169-172.	0.7	1
99	Mycobacteria, Immunoregulation, and Autoimmunity. , 2018, , 121-154.		1
100	Comment on Parker <i>et al</i> . (<i>Evolution, Medicine and Public Health</i> 2021;9:120–30.). Evolution, Medicine and Public Health, 2021, 9, 192-193.	1.1	1
101	Bacteria, Immunity to. , 1998, , 315-320.		0
102	Expression of IL-4 mRNA in peripheral blood mononuclear cells from normal donors in relation to expression of TLR2. Immunology Letters, 2006, 106, 194-197.	1.1	0
103	Host susceptibility and resistance to Mycobacterium tuberculosisGenetic, neuroendocrine, and acquired factors. , 2009, , 87-95.		0
104	Mycobacteria, Immunoregulation, and Autoimmunity. , 2014, , 1-26.		0