Anå¾e Loå;dorfer Boå¾iÄ•

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/624367/publications.pdf

Version: 2024-02-01

501196 687363 31 827 13 28 g-index citations h-index papers 36 36 36 908 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanics of inactive swelling and bursting of porate pollen grains. Biophysical Journal, 2022, 121, 782-792.	0.5	7
2	Measure of overlap between two arbitrary ellipses on a sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	2.1	0
3	Electrostatic interactions between the SARS-CoV-2 virus and a charged electret fibre. Soft Matter, 2021, 17, 4296-4303.	2.7	33
4	Relative humidity in droplet and airborne transmission of disease. Journal of Biological Physics, 2021, 47, 1-29.	1.5	73
5	Global order parameters for particle distributions on the sphere. Physics of Fluids, 2021, 33, 047109.	4.0	1
6	RNA Secondary Structures Regulate Adsorption of Fragments onto Flat Substrates. ACS Omega, 2021, 6, 32823-32831.	3.5	7
7	Site Correlations, Capacitance, and Polarizability From Protein Protonation Fluctuations. Journal of Physical Chemistry B, 2021, 125, 12902-12908.	2.6	4
8	Mechanical design of apertures and the infolding of pollen grain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26600-26607.	7.1	18
9	Symmetry breaking of dipole orientations on Caspar-Klug lattices. Physical Review Research, 2020, 2, .	3.6	2
10	Hidden symmetry of the anomalous bluetongue virus capsid and its role in the infection process. Soft Matter, 2019, 15, 7663-7671.	2.7	12
11	Spherical structure factor and classification of hyperuniformity on the sphere. Physical Review E, 2019, 99, 032601.	2.1	12
12	Role of metallic core for the stability of virus-like particles in strongly coupled electrostatics. Scientific Reports, 2019, 9, 3884.	3.3	7
13	pH-induced morphological changes of proteinaceous viral shells. Scientific Reports, 2019, 9, 5341.	3.3	12
14	Compactness of viral genomes: effect of disperse and localized random mutations. Journal of Physics Condensed Matter, 2018, 30, 084006.	1.8	7
15	From discrete to continuous description of spherical surface charge distributions. Soft Matter, 2018, 14, 1149-1161.	2.7	7
16	Varieties of charge distributions in coat proteins of ssRNA+  viruses. Journal of Physics Condensed Matter, 2018, 30, 024001.	1.8	10
17	Anomalous multipole expansion: Charge regulation of patchy inhomogeneously charged spherical particles. Journal of Chemical Physics, 2018, 149, 163307.	3.0	17
18	Electrostatics-Driven Inflation of Elastic Icosahedral Shells as a Model for Swelling of Viruses. Biophysical Journal, 2018, 115, 822-829.	0.5	12

#	Article	IF	CITATIONS
19	pH Dependence of Charge Multipole Moments in Proteins. Biophysical Journal, 2017, 113, 1454-1465.	0.5	46
20	Effects of long-range interactions on curvature energies of viral shells. Physical Review E, 2016, 93, 052415.	2.1	10
21	Synonymous Mutations Reduce Genome Compactness in Icosahedral ssRNA Viruses. Biophysical Journal, 2015, 108, 194-202.	0.5	39
22	Quantitative nanoscale electrostatics of viruses. Nanoscale, 2015, 7, 17289-17298.	5 . 6	45
23	The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation. Biophysical Journal, 2014, 107, 1970-1979.	0.5	79
24	Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain, 2014, 137, 2938-2950.	7.6	91
25	Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties. Journal of Biological Physics, 2013, 39, 215-228.	1.5	35
26	Electrostatic stability and encapsidation of charged nano-droplets. Soft Matter, 2013, 9, 11357.	2.7	6
27	Symmetry effects in electrostatic interactions between two arbitrarily charged spherical shells in the Debye-HÃ $^1\!\!/\!\!4$ ckel approximation. Journal of Chemical Physics, 2013, 138, 074902.	3.0	34
28	Multivalent ion effects on electrostatic stability of virus-like nano-shells. Journal of Chemical Physics, 2013, 139, 154709.	3.0	21
29	How simple can a model of an empty viral capsid be? Charge distributions in viral capsids. Journal of Biological Physics, 2012, 38, 657-671.	1.5	53
30	Energies and pressures in viruses: contribution of nonspecific electrostatic interactions. Physical Chemistry Chemical Physics, 2012, 14, 3746-3765.	2.8	120
31	Electrostatic self-energy of a partially formed spherical shell in salt solution: Application to stability of tethered and fluid shells as models for viruses and vesicles. Physical Review E, 2011, 83, 041916.	2.1	7