Seyyedali Mirshahghassemi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6243260/seyyedali-mirshahghassemi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8 241 6 8 g-index

8 276 6.9 3.86 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
8	Mechanistic study of oil adsorption onto PVP-coated magnetic nanoparticles: an integrated experimental and molecular dynamics study to inform remediation. <i>Environmental Science: Nano</i> , 2021 , 8, 485-492	7.1	3
7	Metal (Cd, Cr, Ni, Pb) removal from environmentally relevant waters using polyvinylpyrrolidone-coated magnetite nanoparticles <i>RSC Advances</i> , 2020 , 10, 3266-3276	3.7	33
6	A Comparison between the Oil Removal Capacity of Polymer-Coated Magnetic Nanoparticles in Natural and Synthetic Environmental Samples. <i>Environmental Science & Environmental </i>	-443 ³ 2	11
5	Facile Flow-Through Synthesis Method for Production of Large Quantities of Polyvinylpyrrolidone-Coated Magnetic Iron Oxide Nanoparticles for Oil Remediation. <i>Environmental Engineering Science</i> , 2018 , 35, 67-75	2	4
4	Application of high gradient magnetic separation for oil remediation using polymer-coated magnetic nanoparticles. <i>Separation and Purification Technology</i> , 2017 , 179, 328-334	8.3	51
3	Use of PVP-coated magnetite nanoparticles to ameliorate oil toxicity to an estuarine meiobenthic copepod and stimulate the growth of oil-degrading bacteria. <i>Environmental Science: Nano</i> , 2017 , 4, 1859	9 ⁷ 1865	9
2	Evaluation of polymer-coated magnetic nanoparticles for oil separation under environmentally relevant conditions: effect of ionic strength and natural organic macromolecules. <i>Environmental Science: Nano</i> , 2016 , 3, 780-787	7.1	27
1	Oil Recovery from Water under Environmentally Relevant Conditions Using Magnetic Nanoparticles. <i>Environmental Science & Environmental Science & Envir</i>	10.3	103