List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6243160/publications.pdf Version: 2024-02-01

ΜΛΟΟΛ CARAN

#	Article	IF	CITATIONS
1	Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms – Current state of knowledge. Journal of Hazardous Materials, 2022, 424, 127350.	12.4	45
2	An investigation of the ionicity of selected ionic liquid matrices used for matrix-assisted laser desorption/ionization. Journal of Molecular Liquids, 2022, 349, 118106.	4.9	2
3	How does direct current atmospheric pressure glow discharge application influence on physicochemical, nutritional, microbiological, and cytotoxic properties of orange juice?. Food Chemistry, 2022, 377, 131903.	8.2	2
4	From the pills to environment – Prediction and tracking of non-steroidal anti-inflammatory drug concentrations in wastewater. Science of the Total Environment, 2022, 825, 153611.	8.0	17
5	Long-term stability of diclofenac and 4-hydroxydiclofenac in the seawater and sediment microenvironments: Evaluation of biotic and abiotic factors. Environmental Pollution, 2022, 304, 119243.	7.5	5
6	Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring. TrAC - Trends in Analytical Chemistry, 2022, 154, 116671.	11.4	24
7	Application of pulse-modulated radio-frequency atmospheric pressure glow discharge for degradation of doxycycline from a flowing liquid solution. Scientific Reports, 2022, 12, 7354.	3.3	3
8	Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. Environmental Pollution, 2021, 273, 115891.	7.5	69
9	How to decrease pharmaceuticals in the environment? A review. Environmental Chemistry Letters, 2021, 19, 3115-3138.	16.2	65
10	Limitations of Integrative Passive Samplers as a Tool for the Quantification of Pharmaceuticals in the Environment – A Critical Review with the Latest Innovations. Critical Reviews in Analytical Chemistry, 2021, , 1-40.	3.5	9
11	Review of the applicability of ionic liquid matrices for the quantification of small molecules by MALDI MS. Microchemical Journal, 2021, 164, 105983.	4.5	12
12	Static renewal and continuous-flow calibration of two types of passive samplers for the monitoring of pharmaceuticals in wastewater. Microchemical Journal, 2021, 165, 106121.	4.5	7
13	Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms. Science of the Total Environment, 2021, 791, 148251.	8.0	26
14	Exposure of Mytilus trossulus to diclofenac and 4′-hydroxydiclofenac: Uptake, bioconcentration and mass balance for the evaluation of their environmental fate. Science of the Total Environment, 2021, 791, 148172.	8.0	6
15	New sampling methods for detecting pharmaceutical residues in seawater and sediments. , 2021, , 253-274.		0
16	Evaluation of the Possibility of Using Hydroponic Cultivations for the Removal of Pharmaceuticals and Endocrine Disrupting Compounds in Municipal Sewage Treatment Plants. Molecules, 2020, 25, 162.	3.8	8
17	Determination of bisphenol A in size fractions of indoor dust from several microenvironments. Microchemical Journal, 2020, 153, 104392.	4.5	19
18	Anti-inflammatory drugs in the Vistula River following the failure of the Warsaw sewage collection system in 2019. Science of the Total Environment, 2020, 745, 140848.	8.0	12

#	Article	IF	CITATIONS
19	The application of isotopically labeled analogues for the determination of small organic compounds by GC/MS with selected ion monitoring. Analytical Methods, 2020, 12, 3854-3864.	2.7	8
20	ls sequential batch reactor an efficient technology to protect recipient against non-steroidal anti-inflammatory drugs and paracetamol in treated wastewater?. Bioresource Technology, 2020, 318, 124068.	9.6	21
21	The quantification of bisphenols and their analogues in wastewaters and surface water by an improved solid-phase extraction gas chromatography/mass spectrometry method. Environmental Science and Pollution Research, 2020, 27, 28829-28839.	5.3	33
22	Effects of environmentally relevant concentrations of diclofenac in Mytilus trossulus. Science of the Total Environment, 2020, 737, 139797.	8.0	17
23	Electron ionization induced fragmentation of fluorinated derivatives of bisphenols. Rapid Communications in Mass Spectrometry, 2020, 34, e8860.	1.5	0
24	Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction. Chemosphere, 2020, 248, 125976.	8.2	11
25	Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology. Science of the Total Environment, 2019, 647, 149-157.	8.0	56
26	Impact of humic acids, temperature and stirring on passive extraction of pharmaceuticals from water by trihexyl(tetradecyl)phosphonium dicyanamide. Microchemical Journal, 2019, 144, 500-505.	4.5	7
27	Salinity and pH as factors affecting the passive sampling and extraction of pharmaceuticals from water. Journal of Separation Science, 2019, 42, 2949-2956.	2.5	10
28	Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. Environmental Pollution, 2019, 254, 113082.	7.5	33
29	Determination of twenty pharmaceutical contaminants in soil using ultrasound-assisted extraction with gas chromatography-mass spectrometric detection. Chemosphere, 2019, 232, 232-242.	8.2	15
30	The triple-sorbents solid-phase extraction for pharmaceuticals and estrogens determination in wastewater samples. Microchemical Journal, 2019, 149, 103965.	4.5	10
31	Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussels Mytilus edulis trossulus. Talanta, 2019, 200, 316-323.	5.5	32
32	Spectroscopic verification of ionic matrices for MALDI analysis. Journal of Molecular Liquids, 2019, 284, 328-342.	4.9	5
33	Evaluation of bioconcentration and metabolism of diclofenac in mussels Mytilus trossulus - laboratory study. Marine Pollution Bulletin, 2019, 141, 249-255.	5.0	31
34	Valuable polar moieties on cereal-derived biochars. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 275-282.	4.7	7
35	Recovery of Nonsteroidal Anti-Inflammatory Drugs from Wastes Using Ionic-Liquid-Based Three-Phase Partitioning Systems. ACS Sustainable Chemistry and Engineering, 2018, 6, 4574-4585.	6.7	18
36	A new approach for the extraction of tetracyclines from soil matrices: application of the microwave-extraction technique. Analytical and Bioanalytical Chemistry, 2018, 410, 1697-1707.	3.7	24

#	Article	IF	CITATIONS
37	Silylation of acetaminophen by trifluoroacetamide-based silylation agents. Journal of Pharmaceutical and Biomedical Analysis, 2018, 154, 433-437.	2.8	8
38	Effects of five sulphonamides on duckweed (Lemna minor) after prolonged exposure time and their dependency on photoradiation. Science of the Total Environment, 2018, 618, 952-960.	8.0	3
39	Effect of salinity and pH on the calibration of the extraction of pharmaceuticals from water by PASSIL. Talanta, 2018, 179, 271-278.	5.5	14
40	Aqueous Biphasic Systems Using Chiral Ionic Liquids for the Enantioseparation of Mandelic Acid Enantiomers. Solvent Extraction and Ion Exchange, 2018, 36, 617-631.	2.0	20
41	Mixture toxicity of six sulfonamides and their two transformation products to green algae Scenedesmus vacuolatus and duckweed Lemna minor. Chemosphere, 2017, 173, 542-550.	8.2	43
42	Ionic liquids for the passive sampling of sulfonamides from water—applicability and selectivity study. Analytical and Bioanalytical Chemistry, 2017, 409, 3951-3958.	3.7	13
43	The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants. Analytica Chimica Acta, 2017, 967, 102-110.	5.4	12
44	Optimization of a procedure for the simultaneous extraction of polycyclic aromatic hydrocarbons and metal ions by functionalized and non-functionalized carbon nanotubes as effective sorbents. Talanta, 2017, 165, 405-411.	5.5	37
45	Environmental aspects of using gas chromatography for determination of pharmaceutical residues in samples characterized by different composition of the matrix. Archives of Environmental Protection, 2017, 43, 3-9.	1.1	9
46	Calibration of Passive Samplers for the Monitoring of Pharmaceuticals in Water-Sampling Rate Variation. Critical Reviews in Analytical Chemistry, 2017, 47, 204-222.	3.5	38
47	Impact of Veterinary Pharmaceuticals on the Agricultural Environment: A Re-inspection. Reviews of Environmental Contamination and Toxicology, 2016, 243, 89-148.	1.3	8
48	Screening of 17α-ethynylestradiol and non-steroidal anti-inflammatory pharmaceuticals accumulation in <i>Mytilus edulis trossulus</i> (Gould, 1890) collected from the Gulf of Gdańsk. Oceanological and Hydrobiological Studies, 2016, 45, 605-614.	0.7	20
49	Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127, 232-255.	2.8	217
50	Application of the PASSIL technique for the passive sampling of exemplary polar contaminants (pharmaceuticals and phenolic derivatives) from water. Talanta, 2016, 155, 185-192.	5.5	20
51	Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121, 271-296.	2.8	88
52	Recovery of ibuprofen from pharmaceutical wastes using ionic liquids. Green Chemistry, 2016, 18, 3749-3757.	9.0	27
53	Anthelmintics in the Aquatic Environment: A New Analytical Approach. Current Analytical Chemistry, 2016, 12, 227-236.	1.2	5
54	Analytical Techniques for Determining Pharmaceutical Residues in Drinking Water – State of Art and Future Prospects. Current Analytical Chemistry, 2016, 12, 237-248.	1.2	5

#	Article	IF	CITATIONS
55	Current Issues in Pharmaceutical Residues in Drinking Water. Current Analytical Chemistry, 2016, 12, 249-257.	1.2	16
56	Comparison of the Usefulness of SPE Cartridges for the Determination of <i>β</i> -Blockers and <i>β</i> -Agonists (Basic Drugs) in Environmental Aqueous Samples. Journal of Chemistry, 2015, 2015, 1-9.	1.9	10
57	Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Science of the Total Environment, 2015, 508, 498-505.	8.0	52
58	Preliminary study on suitability of ionic liquids as potential passive-sampling media of polyaromatic-hydrocarbon (PAH) analyses in water. Analytical and Bioanalytical Chemistry, 2015, 407, 3531-3536.	3.7	8
59	Enhanced extraction of proteins using choliniumâ€based ionic liquids as phaseâ€forming components of aqueous biphasic systems. Biotechnology Journal, 2015, 10, 1457-1466.	3.5	92
60	Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Science of the Total Environment, 2015, 538, 402-411.	8.0	81
61	Determination of metronidazole residues in water, sediment and fish tissue samples. Chemosphere, 2015, 119, S28-S34.	8.2	68
62	Beta-blockers in the environment: Part I. Mobility and hydrolysis study. Science of the Total Environment, 2014, 493, 1112-1121.	8.0	83
63	Beta-blockers in the environment: Part II. Ecotoxicity study. Science of the Total Environment, 2014, 493, 1122-1126.	8.0	92
64	A new silylating reagent – dimethyl(3,3,3-trifluoropropyl)silyldiethylamine – for the derivatisation of non-steroidal anti-inflammatory drugs prior to gas chromatography–mass spectrometry analysis. Journal of Chromatography A, 2014, 1346, 107-116.	3.7	19
65	A new silylation reagent dimethyl(3,3,3-trifluoropropyl)silyldiethylamine for the analysis of estrogenic compounds by gas chromatography–mass spectrometry. Journal of Chromatography A, 2013, 1301, 215-224.	3.7	19
66	Dimethyl(3,3,3-trifluoropropyl)silyldiethylamine—A new silylating agent for the derivatization of β-blockers and β-agonists in environmental samples. Analytica Chimica Acta, 2013, 782, 75-88.	5.4	11
67	Chemometric optimization of derivatization reactions prior to gas chromatography–mass spectrometry analysis. Journal of Chromatography A, 2013, 1296, 164-178.	3.7	22
68	Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of β-blockers and β-agonists in environmental samples. Journal of Chromatography A, 2012, 1258, 117-127.	3.7	139
69	Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection. Science of the Total Environment, 2012, 441, 77-88.	8.0	109
70	Determination of β-blockers and β-agonists using gas chromatography and gas chromatography–mass spectrometry – A comparative study of the derivatization step. Journal of Chromatography A, 2011, 1218, 8110-8122.	3.7	93
71	Chemometric analysis for optimizing derivatization in gas chromatographyâ€based procedures. Journal of Chemometrics, 2011, 25, 636-643.	1.3	7
72	Verification of the homogeneity of the matrix/analyte mixture on sample plate using MALDI-MS technique and new ionic liquid matrices. , 0, , .		0

#	Article	IF	CITATIONS
73	Calibration of POCIS and PASSIL passive samplers $\hat{a} \in \hat{~}$ influence of humic acids. , 0, , .		0