Gregory D Horwitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deficits in decision-making induced by parietal cortex inactivation are compensated at two timescales. Neuron, 2022, 110, 1924-1931.e5.	3.8	12
2	Cognitive neuroscience: Mental replay in monkeys. Current Biology, 2022, 32, R430-R432.	1.8	0
3	Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Reports, 2021, 34, 108754.	2.9	88
4	Spatial receptive field structure of double-opponent cells in macaque V1. Journal of Neurophysiology, 2021, 125, 843-857.	0.9	4
5	Temporal filtering of luminance and chromaticity in macaque visual cortex. IScience, 2021, 24, 102536.	1.9	2
6	Windows and periscopes into primate behavior. Cell Reports, 2021, 36, 109435.	2.9	0
7	Injections of AAV Vectors for Optogenetics in Anesthetized and Awake Behaving Non-Human Primate Brain. Journal of Visualized Experiments, 2021, , .	0.2	1
8	Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. ELife, 2021, 10, .	2.8	41
9	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	13.7	361
10	Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron, 2020, 107, 1029-1047.	3.8	66
11	Signals Related to Color in the Early Visual Cortex. Annual Review of Vision Science, 2020, 6, 287-311.	2.3	19
12	Temporal information loss in the macaque early visual system. PLoS Biology, 2020, 18, e3000570.	2.6	10
13	Fast and reversible neural inactivation in macaque cortex by optogenetic stimulation of GABAergic neurons. ELife, 2020, 9, .	2.8	23
14	Temporal information loss in the macaque early visual system. , 2020, 18, e3000570.		0
15	Temporal information loss in the macaque early visual system. , 2020, 18, e3000570.		0
16	Temporal information loss in the macaque early visual system. , 2020, 18, e3000570.		0
17	Temporal information loss in the macaque early visual system. , 2020, 18, e3000570.		0
18	Temporal information loss in the macaque early visual system. , 2020, 18, e3000570.		0

Temporal information loss in the macaque early visual system. , 2020, 18, e3000570. 18

2

GREGORY D HORWITZ

#	Article	IF	CITATIONS
19	Temporal information loss in the macaque early visual system. , 2020, 18, e3000570.		0
20	Primate optogenetics: Progress and prognosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26195-26203.	3.3	65
21	Dethroning the Fano Factor: A Flexible, Model-Based Approach to Partitioning Neural Variability. Neural Computation, 2018, 30, 1012-1045.	1.3	44
22	Measurements of neuronal color tuning: Procedures, pitfalls, and alternatives. Vision Research, 2018, 151, 53-60.	0.7	9
23	Model of parafoveal chromatic and luminance temporal contrast sensitivity of humans and monkeys. Journal of Vision, 2018, 18, 1.	0.1	4
24	Optogenetic surface stimulation of the rat cervical spinal cord. Journal of Neurophysiology, 2018, 120, 795-811.	0.9	19
25	Focal optogenetic suppression in macaque area MT biases direction discrimination and decision confidence, but only transiently. ELife, 2018, 7, .	2.8	53
26	AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses. Journal of Neurophysiology, 2017, 117, 2004-2013.	0.9	31
27	Selective Optogenetic Control of Purkinje Cells in Monkey Cerebellum. Neuron, 2017, 95, 51-62.e4.	3.8	76
28	Strategies for targeting primate neural circuits with viral vectors. Journal of Neurophysiology, 2016, 116, 122-134.	0.9	34
29	Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys. Journal of Vision, 2015, 15, 1.	0.1	9
30	What studies of macaque monkeys have told us about human color vision. Neuroscience, 2015, 296, 110-115.	1.1	18
31	Spectral sensitivity differences between rhesus monkeys and humans: implications for neurophysiology. Journal of Neurophysiology, 2014, 112, 3164-3172.	0.9	15
32	Bayesian Active Learning of Neural Firing Rate Maps with Transformed Gaussian Process Priors. Neural Computation, 2014, 26, 1519-1541.	1.3	22
33	Object-Centered Shifts of Receptive Field Positions in Monkey Primary Visual Cortex. Current Biology, 2014, 24, 1653-1658.	1.8	47
34	V1 mechanisms underlying chromatic contrast detection. Journal of Neurophysiology, 2013, 109, 2483-2494.	0.9	29
35	Saccadic eye movements evoked by optogenetic activation of primate V1. Nature Neuroscience, 2012, 15, 1368-1370.	7.1	148
36	Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing. Nature Neuroscience, 2012, 15, 913-919.	7.1	75

GREGORY D HORWITZ

#	Article	IF	CITATIONS
37	Optogenetics in primates: monkey see monkey look. Nature Precedings, 2011, , .	0.1	2
38	Effects of microsaccades on contrast detection and V1 responses in macaques. Journal of Vision, 2011, 11, 3-3.	0.1	34
39	Advances in Color Science: From Retina to Behavior. Journal of Neuroscience, 2010, 30, 14955-14963.	1.7	145
40	Cone Inputs to Simple and Complex Cells in V1 of Awake Macaque. Journal of Neurophysiology, 2007, 97, 3070-3081.	0.9	59
41	Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor. Neuron, 2006, 51, 157-170.	3.8	127
42	Paucity of chromatic linear motion detectors in macaque V1. Journal of Vision, 2005, 5, 4-4.	0.1	38
43	Blue-Yellow Signals Are Enhanced by Spatiotemporal Luminance Contrast in Macaque V1. Journal of Neurophysiology, 2005, 93, 2263-2278.	0.9	56
44	Why Might Clinicians in Malawi Not Offer HIV Testing to Their Patients?. African Journal of Reproductive Health, 2005, 9, 41.	1.1	2
45	Representation of an Abstract Perceptual Decision in Macaque Superior Colliculus. Journal of Neurophysiology, 2004, 91, 2281-2296.	0.9	132
46	Antisense inhibition of reward learning. Nature Neuroscience, 2004, 7, 1023-1024.	7.1	0
47	Direction-selective visual responses in macaque superior colliculus induced by behavioral training. Neuroscience Letters, 2004, 366, 315-319.	1.0	24
48	Short-Latency Fixational Saccades Induced by Luminance Increments. Journal of Neurophysiology, 2003, 90, 1333-1339.	0.9	25
49	Target Selection for Saccadic Eye Movements: Direction-Selective Visual Responses in the Superior Colliculus. Journal of Neurophysiology, 2001, 86, 2527-2542.	0.9	78
50	Target Selection for Saccadic Eye Movements: Prelude Activity in the Superior Colliculus During a Direction-Discrimination Task. Journal of Neurophysiology, 2001, 86, 2543-2558.	0.9	155
51	A Comparison of Spiking Statistics in Motion Sensing Neurones of Flies and Monkeys. , 2001, , 307-320.		7
52	Separate Signals for Target Selection and Movement Specification in the Superior Colliculus. Science, 1999, 284, 1158-1161.	6.0	351
53	Neurophysiology: Sensing and categorizing. Current Biology, 1998, 8, R376-R378.	1.8	8
54	Two types of image generation: Evidence for left and right hemisphere processes. Neuropsychologia, 1995, 33, 1485-1510.	0.7	93

#	Article	IF	CITATIONS
55	Cholinergic Modulation of Associative Memory Function in a Realistic Computational Model of Piriform Cortex. , 1993, , 273-280.		3