
Mo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/624231/publications.pdf Version: 2024-02-01

MOWANC

#	Article	IF	CITATION
1	The level of endogenous JA is critical for activation of SA- and JA-defensive signaling pathway in japonica rice cultivar Ziyu44 upon Magnaporthe oryzae infection. , 2022, 104, 619-629.		2
2	Disruption of the primary salicylic acid hydroxylases in rice enhances broadâ€ s pectrum resistance against pathogens. Plant, Cell and Environment, 2022, 45, 2211-2225.	5.7	7
3	Phosphorylation of OsTGA5 by casein kinase II compromises its suppression of defense-related gene transcription in rice. Plant Cell, 2022, 34, 3425-3442.	6.6	6
4	Physiological and molecular advances in magnesium nutrition of plants. Plant and Soil, 2021, 468, 1-17.	3.7	33
5	High-Quality Genome Sequence Resource of a Rice False Smut Fungus Ustilaginoidea virens Isolate, UV-FJ-1. Phytopathology, 2021, , PHYTO01210007A.	2.2	2
6	Plant Virology Delivers Diverse Toolsets for Biotechnology. Viruses, 2020, 12, 1338.	3.3	28
7	Loss function of SL (sekiguchi lesion) in the rice cultivar Minghui 86 leads to enhanced resistance to (hemi)biotrophic pathogens. BMC Plant Biology, 2020, 20, 507.	3.6	24
8	Exploring the Distribution of Blast Resistance Alleles at the Pi2/9 Locus in Major Rice-Producing Areas of China by a Novel Indel Marker. Plant Disease, 2020, 104, 1932-1938.	1.4	4
9	Improving blast resistance of the rice restorer line, Hui 316, by introducing <i>Pi9</i> or <i>Pi2</i> with marker-assisted selection. Biotechnology and Biotechnological Equipment, 2019, 33, 1195-1203.	1.3	9
10	MoIVD-Mediated Leucine Catabolism Is Required for Vegetative Growth, Conidiation and Full Virulence of the Rice Blast Fungus Magnaporthe oryzae. Frontiers in Microbiology, 2019, 10, 444.	3.5	30
11	Conventional and holistic urban stormwater management in coastal cities: a case study of the practice in Hong Kong and Singapore. International Journal of Water Resources Development, 2018, 34, 192-212.	2.0	28
12	The major leaf ferredoxin Fd2 regulates plant innate immunity in Arabidopsis. Molecular Plant Pathology, 2018, 19, 1377-1390.	4.2	32
13	Constructed wetlands for wastewater treatment in cold climate — A review. Journal of Environmental Sciences, 2017, 57, 293-311.	6.1	160
14	The E3 Ligase APIP10 Connects the Effector AvrPiz-t to the NLR Receptor Piz-t in Rice. PLoS Pathogens, 2016, 12, e1005529.	4.7	128
15	The RhoGAP SPIN6 Associates with SPL11 and OsRac1 and Negatively Regulates Programmed Cell Death and Innate Immunity in Rice. PLoS Pathogens, 2015, 11, e1004629.	4.7	99