List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6242082/publications.pdf Version: 2024-02-01

HAL-BANC LY

#	Article	IF	CITATIONS
1	Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto International, 2022, 37, 735-757.	1.7	59
2	Prediction of the Compressive Strength of Rubberized Concrete Based on Machine Learning Algorithm. Lecture Notes in Civil Engineering, 2022, , 1907-1915.	0.3	0
3	Estimation of the undrained shear strength of sensitive clays using optimized inference intelligence system. Neural Computing and Applications, 2022, 34, 7835.	3.2	7
4	Investigation on factors affecting early strength of high-performance concrete by Gaussian Process Regression. PLoS ONE, 2022, 17, e0262930.	1.1	12
5	Calibration of a stress-strain response for geopolymer concrete under axial compressive load. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236, 1623-1636.	0.7	2
6	Numerical investigation of macroscopic permeability of biporous solids with elliptic vugs. Theoretical and Computational Fluid Dynamics, 2022, 36, 689-704.	0.9	1
7	Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district, Vietnam. Geocarto International, 2021, 36, 1685-1708.	1.7	64
8	Characterization of soybeans and calibration of their DEM input parameters. Particulate Science and Technology, 2021, 39, 530-548.	1.1	13
9	Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Computing and Applications, 2021, 33, 3437-3458.	3.2	66
10	Effect of temperature on the chloride binding capacity of cementitious materials. Magazine of Concrete Research, 2021, 73, 771-784.	0.9	9
11	Surrogate models for the compressive strength mapping of cement mortar materials. Soft Computing, 2021, 25, 6347-6372.	2.1	20
12	Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil. Mathematical Problems in Engineering, 2021, 2021, 1-15.	0.6	189
13	Estimation of Soil Cohesion Using Machine Learning Method: A Random Forest Approach. Advances in Civil Engineering, 2021, 2021, 1-14.	0.4	21
14	Improving pressure drops estimation of fresh cemented paste backfill slurry using a hybrid machine learning method. Minerals Engineering, 2021, 163, 106790.	1.8	28
15	Groundwater Potential Mapping Using <scp>GIS</scp> â€Based Hybrid Artificial Intelligence Methods. Ground Water, 2021, 59, 745-760.	0.7	23
16	Using ANN to Estimate the Critical Buckling Load of Y Shaped Cross-Section Steel Columns. Scientific Programming, 2021, 2021, 1-8.	0.5	4
17	Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams. PLoS ONE, 2021, 16, e0247391.	1.1	15
18	Investigation of ANN Architecture for Predicting Load-Carrying Capacity of Castellated Steel Beams. Complexity, 2021, 2021, 1-14.	0.9	9

#	Article	IF	CITATIONS
19	Prediction Compressive Strength of Concrete Containing GGBFS using Random Forest Model. Advances in Civil Engineering, 2021, 2021, 1-12.	0.4	32
20	Improved strength prediction of cemented paste backfill using a novel model based on adaptive neuro fuzzy inference system and artificial bee colony. Construction and Building Materials, 2021, 284, 122857.	3.2	31
21	On the Training Algorithms for Artificial Neural Network in Predicting the Shear Strength of Deep Beams. Complexity, 2021, 2021, 1-18.	0.9	11
22	Investigation of ANN Model Containing One Hidden Layer for Predicting Compressive Strength of Concrete with Blast-Furnace Slag and Fly Ash. Advances in Materials Science and Engineering, 2021, 2021, 1-17.	1.0	18
23	GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam. Journal of Hydrology, 2021, 599, 126500.	2.3	31
24	Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Computing and Applications, 2021, 33, 17331-17351.	3.2	44
25	Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam. Environmental Pollution, 2021, 282, 116973.	3.7	13
26	Development of deep neural network model to predict the compressive strength of rubber concrete. Construction and Building Materials, 2021, 301, 124081.	3.2	80
27	Performance assessment of artificial neural network using chi-square and backward elimination feature selection methods for landslide susceptibility analysis. Environmental Earth Sciences, 2021, 80, 1.	1.3	14
28	Analyzing travel behavior in Hanoi using Support Vector Machine. Transportation Planning and Technology, 2021, 44, 843-859.	0.9	4
29	A Comparison of Gaussian Process and M5P for Prediction of Soil Permeability Coefficient. Scientific Programming, 2021, 2021, 1-13.	0.5	9
30	A Comparative Study of Soft Computing Models for Prediction of Permeability Coefficient of Soil. Mathematical Problems in Engineering, 2021, 2021, 1-11.	0.6	9
31	Investigation of ANN architecture for predicting the compressive strength of concrete containing GCBFS. PLoS ONE, 2021, 16, e0260847.	1.1	10
32	A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 2020, 35, 1267-1292.	1.7	114
33	Development of advanced artificial intelligence models for daily rainfall prediction. Atmospheric Research, 2020, 237, 104845.	1.8	125
34	A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena, 2020, 188, 104451.	2.2	199
35	Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere, 2020, 244, 125450.	4.2	46
36	Prediction of Later-Age Concrete Compressive Strength Using Feedforward Neural Network. Advances in Materials Science and Engineering, 2020, 2020, 1-8.	1.0	16

#	Article	IF	CITATIONS
37	Improving Voting Feature Intervals for Spatial Prediction of Landslides. Mathematical Problems in Engineering, 2020, 2020, 1-15.	0.6	11
38	A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns. Molecules, 2020, 25, 3486.	1.7	26
39	Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena, 2020, 195, 104805.	2.2	90
40	Soft-computing techniques for prediction of soils consolidation coefficient. Catena, 2020, 195, 104802.	2.2	43
41	Artificial Intelligence-Based Model for the Prediction of Dynamic Modulus of Stone Mastic Asphalt. Applied Sciences (Switzerland), 2020, 10, 5242.	1.3	12
42	Cost-Effective Approaches Based on Machine Learning to Predict Dynamic Modulus of Warm Mix Asphalt with High Reclaimed Asphalt Pavement. Materials, 2020, 13, 3272.	1.3	17
43	Novel Ensemble Landslide Predictive Models Based on the Hyperpipes Algorithm: A Case Study in the Nam Dam Commune, Vietnam. Applied Sciences (Switzerland), 2020, 10, 3710.	1.3	37
44	Parametric Investigation of Particle Swarm Optimization to Improve the Performance of the Adaptive Neuro-Fuzzy Inference System in Determining the Buckling Capacity of Circular Opening Steel Beams. Materials, 2020, 13, 2210.	1.3	26
45	GIS-based ensemble soft computing models for landslide susceptibility mapping. Advances in Space Research, 2020, 66, 1303-1320.	1.2	30
46	GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment. Water (Switzerland), 2020, 12, 683.	1.2	126
47	Extreme Learning Machine Based Prediction of Soil Shear Strength: A Sensitivity Analysis Using Monte Carlo Simulations and Feature Backward Elimination. Sustainability, 2020, 12, 2339.	1.6	43
48	Daily Rainfall Prediction Using Nonlinear Autoregressive Neural Network. Lecture Notes in Networks and Systems, 2020, , 213-221.	0.5	9
49	Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression. Materials, 2020, 13, 1205.	1.3	71
50	Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete. Materials, 2020, 13, 1072.	1.3	67
51	Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry, 2020, 12, 1022.	1.1	115
52	A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial NaÃ ⁻ ve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping. Water (Switzerland), 2020, 12, 239.	1.2	85
53	A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation. Sustainability, 2020, 12, 830.	1.6	124
54	Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams. Sustainability, 2020, 12, 2709.	1.6	52

#	Article	IF	CITATIONS
55	A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil. Sustainability, 2020, 12, 2218.	1.6	74
56	Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling. Sustainability, 2020, 12, 2622.	1.6	46
57	Soft Computing Ensemble Models Based on Logistic Regression for Groundwater Potential Mapping. Applied Sciences (Switzerland), 2020, 10, 2469.	1.3	121
58	Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest. Applied Sciences (Switzerland), 2020, 10, 1871.	1.3	53
59	Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam. International Journal of Environmental Research and Public Health, 2020, 17, 2473.	1.2	100
60	Backpropagation Neural Network-Based Machine Learning Model for Prediction of Soil Friction Angle. Mathematical Problems in Engineering, 2020, 2020, 1-11.	0.6	10
61	Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity. PLoS ONE, 2020, 15, e0243030.	1.1	47
62	Accuracy assessment of extreme learning machine in predicting soil compression coefficient. Vietnam Journal of Earth Sciences, 2020, 42, .	1.0	6
63	Using Artificial Neural Network (ANN) for prediction of soil coefficient of consolidation. Vietnam Journal of Earth Sciences, 2020, 42, .	1.0	10
64	Prediction of Shear Strength of Soil Using Direct Shear Test and Support Vector Machine Model. Open Construction and Building Technology Journal, 2020, 14, 41-50.	0.3	16
65	Prediction of Shear Strength of Soil Using Direct Shear Test and Support Vector Machine Model. Open Construction and Building Technology Journal, 2020, 14, 268-277.	0.3	14
66	Soil Unconfined Compressive Strength Prediction Using Random Forest (RF) Machine Learning Model. Open Construction and Building Technology Journal, 2020, 14, 278-285.	0.3	6
67	A novel hybrid model of Bagging-based NaÃ⁻ve Bayes Trees for landslide susceptibility assessment. Bulletin of Engineering Geology and the Environment, 2019, 78, 1911-1925.	1.6	62
68	A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto International, 2019, 34, 1385-1407.	1.7	88
69	Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction. Applied Sciences (Switzerland), 2019, 9, 2824.	1.3	58
70	Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Applied Sciences (Switzerland), 2019, 9, 3172.	1.3	46
71	Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete. Applied Sciences (Switzerland), 2019, 9, 3841.	1.3	78
72	Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability, 2019, 11, 5426.	1.6	172

#	Article	IF	CITATIONS
73	Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression. Materials, 2019, 12, 1670.	1.3	69
74	Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections. Applied Sciences (Switzerland), 2019, 9, 2258.	1.3	66
75	Hybrid computational intelligence models for groundwater potential mapping. Catena, 2019, 182, 104101.	2.2	110
76	Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials. Materials, 2019, 12, 1828.	1.3	40
77	Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of the Total Environment, 2019, 679, 172-184.	3.9	128
78	Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees. Materials, 2019, 12, 1544.	1.3	57
79	Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches. Applied Sciences (Switzerland), 2019, 9, 1113.	1.3	99
80	A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 2019, 573, 311-323.	2.3	409
81	Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Materials, 2019, 12, 983.	1.3	210
82	Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests, 2019, 10, 157.	0.9	136
83	Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Applied Sciences (Switzerland), 2019, 9, 5458.	1.3	42
84	Development and Identification of Working Parameters for a Lychee Peeling Machine Combining Rollers and a Pressing Belt. AgriEngineering, 2019, 1, 550-566.	1.7	5
85	A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping. Sustainability, 2019, 11, 6323.	1.6	37
86	Development of an Al Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors, 2019, 19, 4941.	2.1	69
87	Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Applied Sciences (Switzerland), 2019, 9, 4715.	1.3	55
88	GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability, 2019, 11, 7118.	1.6	40
89	Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 2019, 175, 203-218.	2.2	229
90	A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena, 2019, 173, 302-311.	2.2	143

#	Article	IF	CITATIONS
91	Evaluation and comparison of LogitBoost Ensemble, Fisher's Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping. Geocarto International, 2019, 34, 316-333.	1.7	63
92	A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 2865-2886.	1.6	163
93	Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. Open Construction and Building Technology Journal, 2019, 13, 178-188.	0.3	32
94	Bagging based Support Vector Machines for spatial prediction of landslides. Environmental Earth Sciences, 2018, 77, 1.	1.3	97
95	A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627, 744-755.	3.9	494
96	A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 2018, 33, 157-170.	1.8	131
97	Landslide susceptibility modelling using different advanced decision trees methods. Civil Engineering and Environmental Systems, 2018, 35, 139-157.	0.4	54
98	Spatial Prediction of Rainfall-Induced Landslides Using Aggregating One-Dependence Estimators Classifier. Journal of the Indian Society of Remote Sensing, 2018, 46, 1457-1470.	1.2	69
99	Machine Learning Methods of Kernel Logistic Regression and Classification and Regression Trees for Landslide Susceptibility Assessment at Part of Himalayan Area, India. Indian Journal of Science and Technology, 2018, 11, 1-10.	0.5	30
100	A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 2018, 642, 1032-1049.	3.9	151
101	A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environmental Earth Sciences, 2017, 76, 1.	1.3	72
102	Landslide Susceptibility Assessment Using Bagging Ensemble Based Alternating Decision Trees, Logistic Regression and J48 Decision Trees Methods: A Comparative Study. Geotechnical and Geological Engineering, 2017, 35, 2597-2611.	0.8	101
103	Application and Comparison of Decision Tree-Based Machine Learning Methods in Landside Susceptibility Assessment at Pauri Garhwal Area, Uttarakhand, India. Environmental Processes, 2017, 4, 711-730.	1.7	85
104	Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 2017, 149, 52-63.	2.2	467
105	Landslide Hazard Assessment Using Random SubSpace Fuzzy Rules Based Classifier Ensemble and Probability Analysis of Rainfall Data: A Case Study at Mu Cang Chai District, Yen Bai Province (Viet) Tj ETQq1 1 0	78143214 rg	gB Ђ ‡Overloci
106	A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling and Software, 2016, 84, 240-250.	1.9	377
107	Numerical investigation of force transmission in granular media using discrete element method. Vietnam Journal of Mechanics, 0, , .	0.2	2
108	Dimensionality reduction and prediction of soil consolidation coefficient using random forest coupling with Relief algorithm. Frontiers of Structural and Civil Engineering, 0, , 1.	1.2	1