Richard I Dorsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6241815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regenerated interneurons integrate into locomotor circuitry following spinal cord injury. Experimental Neurology, 2021, 342, 113737.	4.1	10
2	Intrauterine Growth Restriction Causes Abnormal Embryonic Dentate Gyrus Neurogenesis in Mouse Offspring That Leads to Adult Learning and Memory Deficits. ENeuro, 2021, 8, ENEURO.0062-21.2021.	1.9	13
3	Bsx Is Essential for Differentiation of Multiple Neuromodulatory Cell Populations in the Secondary Prosencephalon. Frontiers in Neuroscience, 2020, 14, 525.	2.8	15
4	A transgene targeted to the zebrafish nkx2.4b locus drives specific green fluorescent protein expression and disrupts thyroid development. Developmental Dynamics, 2020, 249, 1387-1393.	1.8	0
5	A toolbox to study epidermal cell types in zebrafish. Journal of Cell Science, 2017, 130, 269-277.	2.0	46
6	Development of the hypothalamus: conservation, modification and innovation. Development (Cambridge), 2017, 144, 1588-1599.	2.5	122
7	Zebrafish as models for developmental disease & repair. Developmental Dynamics, 2017, 246, 867-867.	1.8	0
8	Lef1-dependent hypothalamic neurogenesis inhibits anxiety. PLoS Biology, 2017, 15, e2002257.	5.6	31
9	Motor Behavior Mediated by Continuously Generated Dopaminergic Neurons in the Zebrafish Hypothalamus Recovers after Cell Ablation. Current Biology, 2016, 26, 263-269.	3.9	56
10	Highâ€resolution analysis of central nervous system expression patterns in zebrafish Gal4 enhancerâ€trap lines. Developmental Dynamics, 2015, 244, 785-796.	1.8	19
11	Identification of Wnt Genes Expressed in Neural Progenitor Zones during Zebrafish Brain Development. PLoS ONE, 2015, 10, e0145810.	2.5	37
12	Hypothalamic radial glia function as self-renewing neural progenitors in the absence of Wnt/ß-catenin signaling. Development (Cambridge), 2015, 143, 45-53.	2.5	25
13	<i>ZC4H2</i> , an XLID gene, is required for the generation of a specific subset of CNS interneurons. Human Molecular Genetics, 2015, 24, 4848-4861.	2.9	48
14	Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury. Developmental Biology, 2015, 403, 15-21.	2.0	85
15	Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development (Cambridge), 2015, 142, 1050-1061.	2.5	117
16	Radial glial progenitors repair the zebrafish spinal cord following transection. Experimental Neurology, 2014, 256, 81-92.	4.1	68
17	Wnt/β-Catenin Signaling Defines Organizing Centers that Orchestrate Growth and Differentiation of the Regenerating Zebrafish Caudal Fin. Cell Reports, 2014, 6, 467-481.	6.4	163
18	Spinal Cord Transection in the Larval Zebrafish. Journal of Visualized Experiments, 2014, , .	0.3	11

RICHARD I DORSKY

#	Article	IF	CITATIONS
19	Dimerized Glycosaminoglycan Chains Increase FGF Signaling during Zebrafish Development. ACS Chemical Biology, 2013, 8, 939-948.	3.4	17
20	Extraocular ectoderm triggers dorsal retinal fate during optic vesicle evagination in zebrafish. Developmental Biology, 2012, 371, 57-65.	2.0	11
21	Wnt Signaling Regulates Postembryonic Hypothalamic Progenitor Differentiation. Developmental Cell, 2012, 23, 624-636.	7.0	90
22	Tcf7l1 is required for spinal cord progenitor maintenance. Developmental Dynamics, 2011, 240, 2256-2264.	1.8	10
23	Identification of Wnt-Responsive Cells in the Zebrafish Hypothalamus. Zebrafish, 2009, 6, 49-58.	1.1	36
24	Tcf3 inhibits spinal cord neurogenesis by regulating <i>sox4a</i> expression. Development (Cambridge), 2009, 136, 781-789.	2.5	36
25	Chromosomal position mediates spinal cord expression of a <i>dbx1a</i> enhancer. Developmental Dynamics, 2009, 238, 2929-2935.	1.8	2
26	Negative regulation of Vsx1 by its paralog Chx10/Vsx2 is conserved in the vertebrate retina. Brain Research, 2008, 1192, 99-113.	2.2	62
27	Proliferation and patterning are mediated independently in the dorsal spinal cord downstream of canonical Wnt signaling. Developmental Biology, 2008, 313, 398-407.	2.0	44
28	Hh and Wnt signaling regulate formation of olig2+ neurons in the zebrafish cerebellum. Developmental Biology, 2008, 318, 162-171.	2.0	56
29	Canonical Wnt signaling is required for the maintenance of dorsal retinal identity. Development (Cambridge), 2008, 135, 4101-4111.	2.5	46
30	Neural Patterning and CNS Functions of Wnt in Zebrafish. Methods in Molecular Biology, 2008, 469, 301-315.	0.9	2
31	The wide world of Wnts. Development (Cambridge), 2007, 134, 4307-4308.	2.5	0
32	Regulation and function of <i>Dbx</i> genes in the zebrafish spinal cord. Developmental Dynamics, 2007, 236, 3472-3483.	1.8	41
33	Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development (Cambridge), 2006, 133, 4451-4461.	2.5	102
34	Expression pattern of zebrafishtcf7 suggests unexplored domains of Wnt/?-catenin activity. Developmental Dynamics, 2005, 233, 233-239.	1.8	33
35	Twotcf3genes cooperate to pattern the zebrafish brain. Development (Cambridge), 2003, 130, 1937-1947.	2.5	137
36	A Transgenic Lef1/β-Catenin-Dependent Reporter Is Expressed in Spatially Restricted Domains throughout Zebrafish Development. Developmental Biology, 2002, 241, 229-237.	2.0	284

RICHARD I DORSKY

#	Article	IF	CITATIONS
37	Environmental signals and cell fate specification in premigratory neural crest. BioEssays, 2000, 22, 708-716.	2.5	100
38	Maternal and embryonic expression of zebrafish lef1. Mechanisms of Development, 1999, 86, 147-150.	1.7	53
39	Control of neural crest cell fate by the Wnt signalling pathway. Nature, 1998, 396, 370-373.	27.8	452
40	Inductive competence, its significance in retinal cell fate determination and a role for Delta–Notch signaling. Seminars in Cell and Developmental Biology, 1998, 9, 241-247.	5.0	29
41	Xath5 Participates in a Network of bHLH Genes in the Developing Xenopus Retina. Neuron, 1997, 19, 981-994.	8.1	253
42	Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature, 1997, 385, 67-70.	27.8	266
43	Xotch inhibits cell differentiation in the xenopus retina. Neuron, 1995, 14, 487-496.	8.1	285
44	XASH1, a Xenopus homolog of achaete-scute: a proneural gene in anterior regions of the vertebrate CNS. Mechanisms of Development, 1993, 40, 25-36.	1.7	92