## **Rainer Cramer**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6241614/publications.pdf Version: 2024-02-01



PAINED CDAMED

| #  | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | LAP-MALDI MS coupled with machine learning: an ambient mass spectrometry approach for high-throughput diagnostics. Chemical Science, 2022, 13, 1746-1758.                                                                                                                  | 3.7 | 9         |
| 2  | Ultrahigh-Throughput Sample Analysis Using Liquid Atmospheric Pressure Matrix-Assisted Laser<br>Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2022, 94, 4141-4145.                                                                                        | 3.2 | 17        |
| 3  | Advances in ionisation techniques for mass spectrometryâ€based omics research. Proteomics, 2022, 22, .                                                                                                                                                                     | 1.3 | 4         |
| 4  | Production and analysis of multiply charged negative ions by liquid atmospheric pressure<br>matrixâ€assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass<br>Spectrometry, 2021, 35, e8246.                                                 | 0.7 | 9         |
| 5  | Speciation and milk adulteration analysis by rapid ambient liquid MALDI mass spectrometry profiling using machine learning. Scientific Reports, 2021, 11, 3305.                                                                                                            | 1.6 | 21        |
| 6  | UHPLC–MS/MS analysis of cocoa bean proteomes from four different genotypes. Food Chemistry, 2020,<br>303, 125244.                                                                                                                                                          | 4.2 | 11        |
| 7  | Bacterial identification by lipid profiling using liquid atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Clinical Chemistry and Laboratory Medicine, 2020, 58, 930-938.                                                                | 1.4 | 18        |
| 8  | Proteomic and peptidomic UHPLC-ESI MS/MS analysis of cocoa beans fermented using the Styrofoam-box method. Food Chemistry, 2020, 316, 126350.                                                                                                                              | 4.2 | 9         |
| 9  | High-speed Analysis of Large Sample Sets – How Can This Key Aspect of the Omics Be Achieved?.<br>Molecular and Cellular Proteomics, 2020, 19, 1760-1766.                                                                                                                   | 2.5 | 4         |
| 10 | Rapid Liquid AP-MALDI MS Profiling of Lipids and Proteins from Goat and Sheep Milk for Speciation and Colostrum Analysis. Proteomes, 2020, 8, 20.                                                                                                                          | 1.7 | 13        |
| 11 | Raw Cow Milk Bacterial Consortium as Bioindicator of Circulating Anti-Microbial Resistance (AMR).<br>Animals, 2020, 10, 2378.                                                                                                                                              | 1.0 | 11        |
| 12 | Advancing Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass<br>Spectrometry Toward Ultrahigh-Throughput Analysis. Analytical Chemistry, 2020, 92, 2931-2936.                                                                                    | 3.2 | 29        |
| 13 | Analysis of Barley Leaf Epidermis and Extrahaustorial Proteomes During Powdery Mildew Infection<br>Reveals That the PR5 Thaumatin-Like Protein TLP5 Is Required for Susceptibility Towards Blumeria<br>graminis f. sp. hordei. Frontiers in Plant Science, 2019, 10, 1138. | 1.7 | 19        |
| 14 | Liquid Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Adds<br>Enhanced Functionalities to MALDI MS Profiling for Disease Diagnostics. ACS Omega, 2019, 4,<br>12759-12765.                                                              | 1.6 | 16        |
| 15 | Atmospheric Pressure Ultraviolet Laser Desorption and Ionization from Liquid Samples for Native Mass Spectrometry. Analytical Chemistry, 2019, 91, 14192-14197.                                                                                                            | 3.2 | 6         |
| 16 | Melanin production by tyrosinase activity on a tyrosine-rich peptide fragment and pH-dependent self-assembly of its lipidated analogue. Organic and Biomolecular Chemistry, 2019, 17, 4543-4553.                                                                           | 1.5 | 12        |
| 17 | The composition of liquid atmospheric pressure matrix-assisted laser desorption/ionization matrices and its effect on ionization in mass spectrometry. Analytica Chimica Acta, 2018, 1013, 43-53.                                                                          | 2.6 | 19        |
| 18 | Characterization of the Proteome of Theobroma cacao Beans by Nano-UHPLC-ESI MS/MS. Proteomics, 2018, 18, 1700339.                                                                                                                                                          | 1.3 | 12        |

| #  | Article                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Collision-induced dissociation of doubly-charged barium-cationized lipids generated from liquid<br>samples by atmospheric pressure matrix-assisted laser desorption/ionization provides structurally<br>diagnostic product ions. Analytical and Bioanalytical Chemistry, 2018, 410, 1435-1444. | 1.9 | 19        |
| 20 | Protein identification using a nanoUHPLC-AP-MALDI MS/MS workflow with CID of multiply charged proteolytic peptides. International Journal of Mass Spectrometry, 2017, 416, 20-28.                                                                                                              | 0.7 | 12        |
| 21 | Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Review of Proteomics, 2016, 13, 593-607.                                                                                                                              | 1.3 | 12        |
| 22 | Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS.<br>Methods, 2016, 104, 11-20.                                                                                                                                                            | 1.9 | 31        |
| 23 | â€~Next generation' laser-based biological mass spectrometry. Methods, 2016, 104, 1-2.                                                                                                                                                                                                         | 1.9 | 1         |
| 24 | Liquid MALDI MS Analysis of Complex Peptide and Proteome Samples. Journal of Proteome Research, 2016, 15, 2998-3008.                                                                                                                                                                           | 1.8 | 8         |
| 25 | Interactions between the Powdery Mildew Effector BEC1054 and Barley Proteins Identify Candidate<br>Host Targets. Journal of Proteome Research, 2016, 15, 826-839.                                                                                                                              | 1.8 | 85        |
| 26 | Ionic Liquids and Other Liquid Matrices for Sensitive MALDI MS Analysis. , 2016, , 51-64.                                                                                                                                                                                                      |     | 4         |
| 27 | Proteomic analysis of the medicinal plant Artemisia annua: Data from leaf and trichome extracts. Data<br>in Brief, 2016, 7, 325-331.                                                                                                                                                           | 0.5 | 16        |
| 28 | Coupling Liquid MALDI MS to Liquid Chromatography. , 2016, , 65-76.                                                                                                                                                                                                                            |     | 0         |
| 29 | Sample Preparation: A Crucial Factor for the Analytical Performance of Rationally Designed MALDI<br>Matrices. Analytical Chemistry, 2015, 87, 1485-1488.                                                                                                                                       | 3.2 | 20        |
| 30 | Distribution analysis of the putative cancer marker S100A4 across invasive squamous cell carcinoma penile tissue. EuPA Open Proteomics, 2015, 7, 1-10.                                                                                                                                         | 2.5 | 2         |
| 31 | Proteomic analysis of Artemisia annua – towards elucidating the biosynthetic pathways of the<br>antimalarial pro-drug artemisinin. BMC Plant Biology, 2015, 15, 175.                                                                                                                           | 1.6 | 41        |
| 32 | Multiprobabilistic prediction in early medical diagnoses. Annals of Mathematics and Artificial Intelligence, 2015, 74, 203-222.                                                                                                                                                                | 0.9 | 9         |
| 33 | MALDI mass spectrometry in prostate cancer biomarker discovery. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2014, 1844, 940-949.                                                                                                                                               | 1.1 | 32        |
| 34 | Enhanced MALDI MS Sensitivity by Weak Base Additives and Glycerol Sample Coating. Analytical Chemistry, 2014, 86, 744-751.                                                                                                                                                                     | 3.2 | 14        |
| 35 | MALDI MS profiling of postâ€DRE urine samples highlights the potential of βâ€microseminoprotein as a marker for prostatic diseases. Prostate, 2014, 74, 103-111.                                                                                                                               | 1.2 | 22        |
| 36 | Plant Proteomics in Crop Improvement. Proteomics, 2013, 13, 1771-1771.                                                                                                                                                                                                                         | 1.3 | 5         |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mutual binding of polymer end-groups by complementary π–π-stacking: a molecular "Roman<br>Handshake― Chemical Communications, 2013, 49, 454-456.                                                                           | 2.2 | 33        |
| 38 | Analysis of tyrosine phosphorylation and phosphotyrosine-binding proteins in germinating seeds from Scots pine. Plant Physiology and Biochemistry, 2013, 67, 33-40.                                                        | 2.8 | 10        |
| 39 | A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013, 32, 335-365.                                                | 2.8 | 70        |
| 40 | INPPO Actions and Recognition as a Driving Force for Progress in Plant Proteomics: Change of Guard, INPPO Update, and Upcoming Activities. Proteomics, 2013, 13, 3093-3100.                                                | 1.3 | 0         |
| 41 | Liquid APâ€UVâ€MALDI Enables Stable Ion Yields of Multiply Charged Peptide and Protein Ions for Sensitive<br>Analysis by Mass Spectrometry. Angewandte Chemie - International Edition, 2013, 52, 2364-2367.                | 7.2 | 63        |
| 42 | Application of DIGE and Mass Spectrometry in the Study of Type 2 Diabetes Mellitus Mouse Models.<br>Methods in Molecular Biology, 2012, 854, 299-318.                                                                      | 0.4 | 0         |
| 43 | Hydroponic Isotope Labeling of Entire Plants and High-Performance Mass Spectrometry for Quantitative Plant Proteomics. Methods in Molecular Biology, 2012, 893, 155-173.                                                   | 0.4 | 3         |
| 44 | Translational plant proteomics: A perspective. Journal of Proteomics, 2012, 75, 4588-4601.                                                                                                                                 | 1.2 | 63        |
| 45 | Functional Proteomic Analysis of Long-term Growth Factor Stimulation and Receptor Tyrosine Kinase<br>Coactivation in Swiss 3T3 Fibroblasts. Molecular and Cellular Proteomics, 2012, 11, 1690-1708.                        | 2.5 | 3         |
| 46 | Conformal predictors in early diagnostics of ovarian and breast cancers. Progress in Artificial Intelligence, 2012, 1, 245-257.                                                                                            | 1.5 | 14        |
| 47 | Structure and evolution of barley powdery mildew effector candidates. BMC Genomics, 2012, 13, 694.                                                                                                                         | 1.2 | 238       |
| 48 | Boosting the Globalization of Plant Proteomics through INPPO: Current Developments and Future Prospects. Proteomics, 2012, 12, 359-368.                                                                                    | 1.3 | 10        |
| 49 | Mass spectrometry imaging of glucosinolates in Arabidopsis flowers and siliques. Phytochemistry, 2012, 77, 110-118.                                                                                                        | 1.4 | 50        |
| 50 | Multiprobabilistic Venn Predictors with Logistic Regression. International Federation for Information Processing, 2012, , 224-233.                                                                                         | 0.4 | 5         |
| 51 | Deciphering the Complexity of Sainfoin (Onobrychis viciifolia) Proanthocyanidins by MALDI-TOF Mass<br>Spectrometry with a Judicious Choice of Isotope Patterns and Matrixes. Analytical Chemistry, 2011, 83,<br>4147-4153. | 3.2 | 27        |
| 52 | MALDI MS-Based Biomarker Profiling of Blood Samples. , 2011, , 733-747.                                                                                                                                                    |     | 0         |
| 53 | Proteogenomics and in silico structural and functional annotation of the barley powdery mildew Blumeria graminis f. sp. hordei. Methods, 2011, 54, 432-441.                                                                | 1.9 | 57        |
| 54 | Single-cell proteomic analysis of glucosinolate-rich S-cells in Arabidopsis thaliana. Methods, 2011, 54, 413-423.                                                                                                          | 1.9 | 52        |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Editorial for "Advances in Biological Mass Spectrometry and Proteomics― Methods, 2011, 54, 349-350.                                                                               | 1.9 | 2         |
| 56 | Biomarker Discovery and Redundancy Reduction towards Classification using a Multi-factorial MALDI-TOF MS T2DM Mouse Model Dataset. BMC Bioinformatics, 2011, 12, 140.             | 1.2 | 5         |
| 57 | Quantitative plant proteomics. Proteomics, 2011, 11, 756-775.                                                                                                                     | 1.3 | 70        |
| 58 | Fully automated software solution for protein quantitation by global metabolic labeling with stable isotopes. Rapid Communications in Mass Spectrometry, 2011, 25, 1461-1471.     | 0.7 | 11        |
| 59 | Evaluation of Peak-Picking Algorithms for Protein Mass Spectrometry. Methods in Molecular Biology,<br>2011, 696, 341-352.                                                         | 0.4 | 17        |
| 60 | Quantitative Plant Proteomics Using Hydroponic Isotope Labeling of Entire Plants (HILEP). , 2011, ,<br>363-380.                                                                   |     | 0         |
| 61 | Early detection of ovarian cancer in samples pre-diagnosis using CA125 and MALDI-MS peaks. Cancer<br>Genomics and Proteomics, 2011, 8, 289-305.                                   | 1.0 | 6         |
| 62 | A wellâ€characterised peak identification list of MALDI MS profile peaks for human blood serum.<br>Proteomics, 2010, 10, 3388-3392.                                               | 1.3 | 32        |
| 63 | Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell<br>death at early stages of differentiation. Plant Journal, 2010, 64, 456-469. | 2.8 | 112       |
| 64 | Peptides Generated Ex Vivo from Serum Proteins by Tumor-Specific Exopeptidases Are Not Useful<br>Biomarkers in Ovarian Cancer. Clinical Chemistry, 2010, 56, 262-271.             | 1.5 | 31        |
| 65 | Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism.<br>Science, 2010, 330, 1543-1546.                                                  | 6.0 | 725       |
| 66 | Introduction of 4-Chloro-α-cyanocinnamic Acid Liquid Matrices for High Sensitivity UV-MALDI MS.<br>Journal of Proteome Research, 2010, 9, 1931-1940.                              | 1.8 | 32        |
| 67 | S6K1 is acetylated at lysine 516 in response to growth factor stimulation. Biochemical and Biophysical<br>Research Communications, 2010, 398, 400-405.                            | 1.0 | 19        |
| 68 | Serum Proteomic Abnormality Predating Screen Detection of Ovarian Cancer. Computer Journal, 2009, 52, 326-333.                                                                    | 1.5 | 15        |
| 69 | In Planta Proteomics and Proteogenomics of the Biotrophic Barley Fungal Pathogen Blumeria<br>graminis f. sp. hordei>. Molecular and Cellular Proteomics, 2009, 8, 2368-2381.      | 2.5 | 75        |
| 70 | Mass spectrometry in clinical proteomics – from the present to the future. Proteomics - Clinical Applications, 2009, 3, 6-17.                                                     | 0.8 | 71        |
| 71 | Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings. Peptides, 2009, 30, 2136-2143.                                                            | 1.2 | 27        |
| 72 | Production of novel ACE inhibitory peptides from β-lactoglobulin using Protease N Amano.<br>International Dairy Journal, 2009, 19, 69-76.                                         | 1.5 | 48        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | MALDI MS. Methods in Molecular Biology, 2009, 564, 85-103.                                                                                                                                                        | 0.4 | 5         |
| 74 | Difference gel electrophoresis. Proteomics, 2008, 8, 4886-4897.                                                                                                                                                   | 1.3 | 213       |
| 75 | Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry, 2008, 69, 1962-1972.                                                     | 1.4 | 103       |
| 76 | Proteomic Profiling of Neuromas Reveals Alterations in Protein Composition and Local Protein<br>Synthesis in Hyper-Excitable Nerves. Molecular Pain, 2008, 4, 1744-8069-4-33.                                     | 1.0 | 62        |
| 77 | Gene and Protein Expression Profiling of Human Ovarian Cancer Cells Treated with the Heat Shock<br>Protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin. Cancer Research, 2007, 67, 3239-3253.             | 0.4 | 135       |
| 78 | Liquid matrix deposition on conductive hydrophobic surfaces for tuning and quantitation in<br>UV-MALDI mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 693-697.               | 1.2 | 40        |
| 79 | Chromatographic alignment of LC-MS and LC-MS/MS datasets by genetic algorithm feature extraction.<br>Journal of the American Society for Mass Spectrometry, 2007, 18, 1835-1843.                                  | 1.2 | 42        |
| 80 | Quantitative proteomics using uniform <sup>15</sup> Nâ€labeling, MASCOT, and the transâ€proteomic<br>pipeline. Proteomics, 2007, 7, 3462-3469.                                                                    | 1.3 | 41        |
| 81 | Serum Peptide Profiling using MALDI Mass Spectrometry. Proteomics, 2007, 7, 77-89.                                                                                                                                | 1.3 | 51        |
| 82 | PIGOK:Â Linking Protein Identity to Gene Ontology and Function. Journal of Proteome Research, 2006, 5,<br>3429-3432.                                                                                              | 1.8 | 10        |
| 83 | Automatic internal calibration in liquid chromatography/Fourier transform ion cyclotron resonance<br>mass spectrometry of protein digests. Rapid Communications in Mass Spectrometry, 2006, 20,<br>3076-3080.     | 0.7 | 16        |
| 84 | PDGF regulates the actin cytoskeleton through hnRNP-K-mediated activation of the ubiquitin E3-ligase<br>MIR. EMBO Journal, 2006, 25, 1871-1882.                                                                   | 3.5 | 21        |
| 85 | Combined affinity labelling and mass spectrometry analysis of differential cell surface protein expression in normal and prostate cancer cells. Oncogene, 2005, 24, 5905-5913.                                    | 2.6 | 45        |
| 86 | Proteomic analysis of plasma membrane vesicles isolated from the rat renal cortex. Proteomics, 2005, 5, 101-112.                                                                                                  | 1.3 | 61        |
| 87 | Liquid ultraviolet matrix-assisted laser desorption/ionization - mass spectrometry for automated proteomic analysis. Proteomics, 2005, 5, 360-370.                                                                | 1.3 | 39        |
| 88 | Stress-induced changes in theSchizosaccharomyces pombe proteome using two-dimensional difference gel electrophoresis, mass spectrometry and a novel integrated robotics platform. Proteomics, 2005, 5, 1669-1685. | 1.3 | 24        |
| 89 | Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics, 2005, 5, 2908-2926. | 1.3 | 100       |
| 90 | Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol. Proteomics, 2005, 5, 4376-4388.                                                                                        | 1.3 | 30        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Heat Shock Protein 27 Is the Major Differentially Phosphorylated Protein Involved in Renal Epithelial<br>Cellular Stress Response and Controls Focal Adhesion Organization and Apoptosis. Journal of<br>Biological Chemistry, 2005, 280, 29885-29898. | 1.6 | 81        |
| 92  | High-throughput proteomics using matrix-assisted laser desorption/ ionization mass spectrometry.<br>Expert Review of Proteomics, 2005, 2, 407-420.                                                                                                    | 1.3 | 31        |
| 93  | The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. American Journal of Physiology - Renal Physiology, 2004, 287, F353-F364.                                                 | 1.3 | 100       |
| 94  | Quantitative amino acid and proteomic analysis: Very low excretion of polypeptides >750 Da in normal urine. Kidney International, 2004, 66, 1994-2003.                                                                                                | 2.6 | 74        |
| 95  | Differential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by type I and II interferons. Oncogene, 2004, 23, 1693-1703.                                                                  | 2.6 | 52        |
| 96  | Sample Preparation of Gel Electrophoretically Separated Protein Binding Partners for Analysis by<br>Mass Spectrometry. , 2004, 261, 499-510.                                                                                                          |     | 5         |
| 97  | On-target oxidation of methionine residues using hydrogen peroxide for composition-restricted matrix-assisted laser desorption/ionisation peptide mass mapping. Rapid Communications in Mass Spectrometry, 2003, 17, 1212-1215.                       | 0.7 | 9         |
| 98  | Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clinical Science, 2003, 104, 483-490.                                                         | 1.8 | 90        |
| 99  | Characterization of Protein Phosphorylation by Mass Spectrometry Using Immobilized Metal Ion<br>Affinity Chromatography with On-Resin Î <sup>2</sup> -Elimination and Michael Addition. Analytical Chemistry, 2003,<br>75, 3232-3243.                 | 3.2 | 86        |
| 100 | Phosphorylation of the WASP-VCA Domain Increases Its Affinity for the Arp2/3 Complex and Enhances Actin Polymerization by WASP. Molecular Cell, 2003, 11, 1229-1239.                                                                                  | 4.5 | 126       |
| 101 | Protein Kinase C Phosphorylates Ribosomal Protein S6 Kinase βII and Regulates Its Subcellular<br>Localization. Molecular and Cellular Biology, 2003, 23, 852-863.                                                                                     | 1.1 | 65        |
| 102 | Proteomics in the Analysis of Prostate Cancer. , 2003, 81, 277-298.                                                                                                                                                                                   |     | 7         |
| 103 | Urinary Proteomics of Renal Fanconi Syndrome. , 2003, 141, 155-169.                                                                                                                                                                                   |     | 14        |
| 104 | Localization of a highly active pool of type II phosphatidylinositol 4-kinase in a<br>p97/valosin-containing-protein-rich fraction of the endoplasmic reticulum. Biochemical Journal, 2003,<br>373, 57-63.                                            | 1.7 | 61        |
| 105 | Evaluation of Two-dimensional Differential Gel Electrophoresis for Proteomic Expression Analysis of<br>a Model Breast Cancer Cell System. Molecular and Cellular Proteomics, 2002, 1, 91-98.                                                          | 2.5 | 255       |
| 106 | Phosphorylation of Tyrosine 291 Enhances the Ability of WASp to Stimulate Actin Polymerization and Filopodium Formation. Journal of Biological Chemistry, 2002, 277, 45115-45121.                                                                     | 1.6 | 185       |
| 107 | Differential Proteome Analysis of Replicative Senescence in Rat Embryo Fibroblasts. Molecular and Cellular Proteomics, 2002, 1, 280-292.                                                                                                              | 2.5 | 41        |
| 108 | Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid–adenine dinucleotide phosphate via<br>a 2′-specific Ca2+-dependent phosphatase. Biochemical Journal, 2002, 365, 295-301.                                                             | 1.7 | 43        |

| #   | Article                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Chaperonin assisted overexpression, purification, and characterisation of human PP2A methyltransferase. Protein Expression and Purification, 2002, 26, 266-274.                                                                                                                                                  | 0.6 | 4         |
| 110 | Activation of the ATPase Activity of Hsp90 by the Stress-Regulated Cochaperone Aha1. Molecular Cell, 2002, 10, 1307-1318.                                                                                                                                                                                        | 4.5 | 487       |
| 111 | Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS. Journal of the American Society for Mass Spectrometry, 2002, 13, 1042-1051.                                                                                                         | 1.2 | 64        |
| 112 | Identification of novel candidates for replicative senescence by functional proteomics. Oncogene, 2002, 21, 4403-4413.                                                                                                                                                                                           | 2.6 | 29        |
| 113 | Cloning of a Human Type II Phosphatidylinositol 4-Kinase Reveals a Novel Lipid Kinase Family. Journal of<br>Biological Chemistry, 2001, 276, 16635-16640.                                                                                                                                                        | 1.6 | 90        |
| 114 | Proteomics – post-genomic cartography to understand gene function. Trends in Pharmacological Sciences, 2001, 22, 376-384.                                                                                                                                                                                        | 4.0 | 104       |
| 115 | The nature of collision-induced dissociation processes of doubly protonated peptides: comparative study for the future use of matrix-assisted laser desorption/ionization on a hybrid quadrupole time-of-flight mass spectrometer in proteomics. Rapid Communications in Mass Spectrometry, 2001, 15, 2058-2066. | 0.7 | 49        |
| 116 | High-resolution infrared laser desorption/ionization and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of synthetic polymers. , 1999, 34, 1089-1092.                                                                                                                              |     | 2         |
| 117 | Analysis of Phospho- and Glycopolypeptides with Infrared Matrix-Assisted Laser Desorption and Ionization. Analytical Chemistry, 1998, 70, 4939-4944.                                                                                                                                                             | 3.2 | 45        |
| 118 | Matrix-assisted laser desorption and ionization in the Oî—,H and Cî—»O absorption bands of aliphatic and<br>aromatic matrices: dependence on laser wavelength and temporal beam profile. International Journal<br>of Mass Spectrometry and Ion Processes, 1997, 169-170, 51-67.                                  | 1.9 | 74        |
| 119 | Infrared matrix-assisted laser desorption and ionization by using a tunable mid-infrared free-electron laser. Journal of the American Society for Mass Spectrometry, 1996, 7, 1187-1193.                                                                                                                         | 1.2 | 45        |
| 120 | Direct mass spectrometric sequencing of low-picomole amounts of oligodeoxynucleotides with up to 21 bases by matrix-assisted laser desorption/ionization mass spectrometry. Journal of Mass Spectrometry, 1995, 30, 99-112.                                                                                      | 0.7 | 129       |
| 121 | Comparison of IR- and UV-matrix-assisted laser desorption/ionization mass spectrometry of oligodeoxynucleotides. Nucleic Acids Research, 1994, 22, 2460-2465.                                                                                                                                                    | 6.5 | 76        |
| 122 | Ion stability of nucleic acids in infrared matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Research, 1993, 21, 3347-3357.                                                                                                                                                           | 6.5 | 193       |