
Yong-An Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6241306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers. Materials and Design, 2016, 101, 16-23.	7.0	126
2	Over-aging influenced matrix precipitate characteristics improve fatigue crack propagation in a high Zn-containing Al-Zn-Mg-Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 42-54.	5.6	58
3	Investigation of microstructural evolution and mechanical properties during two-step ageing treatment at 115Âand 160°C in an Al–Zn–Mg–Cu alloy pre-stretched thick plate. Materials Characterization, 2008, 59, 278-282.	4.4	54
4	Effect of Zn addition on microstructure and mechanical properties of an Al–Mg–Si alloy. Progress in Natural Science: Materials International, 2014, 24, 97-100.	4.4	52
5	Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy. Materials Characterization, 2018, 145, 258-267.	4.4	45
6	Thermodynamic calculation of high zinc-containing Al-Zn-Mg-Cu alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 1481-1487.	4.2	39
7	Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy. Materials & Design, 2007, 28, 1154-1158.	5.1	37
8	Microstructural evolution of Al–0.66Mg–0.85Si alloy during homogenization. Transactions of Nonferrous Metals Society of China, 2014, 24, 939-945.	4.2	26
9	Natural aging behavior in pre-aged Al–Mg–Si–Cu alloys with and without Zn addition. Journal of Alloys and Compounds, 2019, 773, 496-502.	5.5	26
10	Phases and microstructures of high Zn-containing Al–Zn–Mg–Cu alloys. Rare Metals, 2016, 35, 380-384.	7.1	25
11	Microstructure and mechanical properties of 7A56 aluminum alloy after solution treatment. Rare Metals, 2021, 40, 168-175.	7.1	22
12	Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments. Transactions of Nonferrous Metals Society of China, 2008, 18, 40-45.	4.2	17
13	Microstructure of as-extruded 7136 aluminum alloy and its evolution during solution treatment. Rare Metals, 2017, 36, 256-262.	7.1	15
14	Quenching residual stress distributions in aluminum alloy plates with different dimensions. Rare Metals, 2019, 38, 1051-1061.	7.1	14
15	Mechanical properties, microstructure and surface quality of Al-1.2Mg-0.6Si-0.2Cu alloy after solution heat treatment. Rare Metals, 2017, 36, 550-555.	7.1	11
16	Aging precipitation characteristics and tensile properties of Al–Zn–Mg–Cu alloys with different additional Zn contents. Rare Metals, 2021, 40, 2160-2166.	7.1	8
17	Influence of minor Sc additions on grain refinement and microstructure characteristics of a high Zn-containing Al-Zn-Mg-Cu-Zr alloy. Journal of Central South University, 2022, 29, 780-794.	3.0	8
18	Single-stage aging behaviour and precipitate evolution in a high Zn-containing Al–9.78Zn–2.02Mg–1.76Cu alloy. Materials Science and Technology, 2018, 34, 718-724.	1.6	7

Yong-An Zhang

#	Article	IF	CITATIONS
19	Deep drawing of 6A16 aluminum alloy for automobile body with various blank-holder forces. Rare Metals, 2019, 38, 946-953.	7.1	7
20	Microstructure and electrolysis behavior of self-healing Cu–Ni–Fe composite inert anodes for aluminum electrowinning. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 1208-1216.	4.9	5
21	Effect of Friction Coefficient on Deep Drawing of 6A16 Aluminum Alloy for Automobile Body. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 208-214.	1.0	3
22	Transformation behavior of precipitates during artificial aging at 170°C in Al–Mg–Si–Cu alloys with and without Zn addition. Rare Metals, 2021, 40, 1907-1914.	7.1	3
23	Finite element simulation on residual stress during immersion quenching and pre-stretching of Al7055 thick plates. Materials Research Express, 2022, 9, 026525.	1.6	3
24	Heat Transfer Behavior During Water Spray Quenching of 7xxx Aluminum Alloy Plates. Journal of Thermal Science and Engineering Applications, 2022, 14, .	1.5	2
25	Microstructure, Texture, and Formability Control by Initial Hotâ€Rolling Temperature of Al–Mg–Si Alloy Sheets for Automotive Applications. Advanced Engineering Materials, 2022, 24, .	3.5	2
26	Numerical Simulation on the Effect of Conveyor Velocity of the Roller Table on Stress Distribution and Evolution in Large Aluminum Alloy Thick Plates. Journal of Shanghai Jiaotong University (Science), 0, , 1.	0.9	0
27	Prediction of residual stress field on the surface of quenched 7055 aluminium alloy plates. Materials Research Express, 2022, 9, 036502.	1.6	0