
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6241021/publications.pdf Version: 2024-02-01

SHINYA DOHCU

#	Article	IF	CITATIONS
1	Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Research, 2005, 1038, 208-215.	2.2	315
2	Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain, Behavior, and Immunity, 2006, 20, 449-455.	4.1	232
3	Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: A mechanism for inflammation in the progression of Alzheimer's disease. Brain, Behavior, and Immunity, 2009, 23, 507-517.	4.1	218
4	Detachment of Brain Pericytes from the Basal Lamina is Involved in Disruption of the Blood–Brain Barrier Caused by Lipopolysaccharide-Induced Sepsis in Mice. Cellular and Molecular Neurobiology, 2009, 29, 309-316.	3.3	156
5	Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro. Journal of Neuroinflammation, 2011, 8, 106.	7.2	150
6	Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Frontiers in Cellular Neuroscience, 2021, 15, 661838.	3.7	147
7	Lipopolysaccharide-Activated Microglia Induce Dysfunction of the Blood–Brain Barrier in Rat Microvascular Endothelial Cells Co-Cultured with Microglia. Cellular and Molecular Neurobiology, 2010, 30, 247-253.	3.3	139
8	Tumor Necrosis Factor-α Mediates the Blood–Brain Barrier Dysfunction Induced by Activated Microglia in Mouse Brain Microvascular Endothelial Cells. Journal of Pharmacological Sciences, 2010, 112, 251-254.	2.5	138
9	Testing the Neurovascular Hypothesis of Alzheimer's Disease: LRP-1 Antisense Reduces Blood-brain Barrier Clearance, Increases Brain Levels of Amyloid-β Protein, and Impairs Cognition. Journal of Alzheimer's Disease, 2009, 17, 553-570.	2.6	111
10	Peroxisome Proliferator-Activated Receptor-Î ³ -Mediated Positive Energy Balance in the Rat Is Associated with Reduced Sympathetic Drive to Adipose Tissues and Thyroid Status. Endocrinology, 2008, 149, 2121-2130.	2.8	106
11	Paracellular Barrier and Tight Junction Protein Expression in the Immortalized Brain Endothelial Cell Lines bEND.3, bEND.5 and Mouse Brain Endothelial Cell 4. Biological and Pharmaceutical Bulletin, 2013, 36, 492-495.	1.4	96
12	TNF-α-sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between lκB-NFκB and JAK-STAT3 pathways. Brain Research, 2018, 1692, 34-44.	2.2	72
13	Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvascular Research, 2019, 124, 61-66.	2.5	71
14	Metformin induces up-regulation of blood–brain barrier functions by activating AMP-activated protein kinase in rat brain microvascular endothelial cells. Biochemical and Biophysical Research Communications, 2013, 433, 586-590.	2.1	68
15	Brain pericytes are the most thrombin-sensitive matrix metalloproteinase-9-releasing cell type constituting the blood–brain barrier in vitro. Neuroscience Letters, 2015, 599, 109-114.	2.1	66
16	Tumor necrosis factor-α-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neuroscience Letters, 2014, 578, 133-138.	2.1	64
17	Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids and Barriers of the CNS, 2013, 10, 23.	5.0	59
18	Role of thrombin-PAR1-PKCÎĴδaxis in brain pericytes in thrombin-induced MMP-9 production and blood–brain barrier dysfunction in vitro. Neuroscience, 2017, 350, 146-157.	2.3	57

#	Article	IF	CITATIONS
19	In Vitro Blood-Brain Barrier Models Using Brain Capillary Endothelial Cells Isolated from Neonatal and Adult Rats Retain Age-Related Barrier Properties. PLoS ONE, 2013, 8, e55166.	2.5	53
20	Nitric Oxide Isoenzymes Regulate Lipopolysaccharide-Enhanced Insulin Transport across the Blood-Brain Barrier. Endocrinology, 2008, 149, 1514-1523.	2.8	51
21	Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. Journal of Neuroinflammation, 2011, 8, 167.	7.2	48
22	Brain-transportable dipeptides across the blood-brain barrier in mice. Scientific Reports, 2019, 9, 5769.	3.3	44
23	Human Immunodeficiency Virus-1 Uses the Mannose-6-Phosphate Receptor to Cross the Blood-Brain Barrier. PLoS ONE, 2012, 7, e39565.	2.5	41
24	Copper complexing decreases the ability of amyloid beta peptide to cross the BBB and enter brain parenchyma. Peptides, 2007, 28, 1424-1432.	2.4	40
25	Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by the p38 mitogen-activated protein kinase pathway. Experimental Neurology, 2008, 210, 740-749.	4.1	40
26	Levetiracetam treatment influences blood-brain barrier failure associated with angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice. Brain Research, 2016, 1652, 1-13.	2.2	40
27	Autocrine and paracrine up-regulation of blood–brain barrier function by plasminogen activator inhibitor-1. Microvascular Research, 2011, 81, 103-107.	2.5	36
28	An Inhibitory Role of Nitric Oxide in the Dynamic Regulation of the Blood-Brain Barrier Function. Cellular and Molecular Neurobiology, 2007, 27, 263-270.	3.3	34
29	Disruption of the blood–brain barrier in collagen-induced arthritic mice. Neuroscience Letters, 2010, 482, 208-211.	2.1	32
30	Lipopolysaccharide-activated microglia lower P-glycoprotein function in brain microvascular endothelial cells. Neuroscience Letters, 2012, 524, 45-48.	2.1	31
31	Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells. PLoS ONE, 2014, 9, e100152.	2.5	31
32	Contribution of thrombin-reactive brain pericytes to blood-brain barrier dysfunction in an in vivo mouse model of obesity-associated diabetes and an in vitro rat model. PLoS ONE, 2017, 12, e0177447.	2.5	30
33	Compounds Blocking Methylglyoxal-induced Protein Modification and Brain Endothelial Injury. Archives of Medical Research, 2014, 45, 753-764.	3.3	29
34	Inhibition of Transforming Growth Factor-β Production in Brain Pericytes Contributes to Cyclosporin A-Induced Dysfunction of the Blood-Brain Barrier. Cellular and Molecular Neurobiology, 2007, 27, 317-328.	3.3	28
35	Involvement of glial cells in cyclosporine-increased permeability of brain endothelial cells. Cellular and Molecular Neurobiology, 2000, 20, 781-786.	3.3	27
36	A Role for Hypothalamic AMP-Activated Protein Kinase in the Mediation of Hyperphagia and Weight Gain Induced by Chronic Treatment with Olanzapine in Female Rats. Cellular and Molecular Neurobiology, 2011, 31, 985-989.	3.3	27

#	Article	IF	CITATIONS
37	Nitric oxide mediates cyclosporine-induced impairment of the blood–brain barrier in cocultures of mouse brain endothelial cells and rat astrocytes. European Journal of Pharmacology, 2004, 505, 51-59.	3.5	25
38	Cyclosporin A induces hyperpermeability of the blood–brain barrier by inhibiting autocrine adrenomedullin-mediated up-regulation of endothelial barrier function. European Journal of Pharmacology, 2010, 644, 5-9.	3.5	25
39	Uptake and Efflux of Quinacrine, a Candidate for the Treatment of Prion Diseases, at the Blood-Brain Barrier. Cellular and Molecular Neurobiology, 2004, 24, 205-217.	3.3	24
40	Adverse Effect of Cyclosporin A on Barrier Functions of Cerebral Microvascular Endothelial Cells After Hypoxia-reoxygenation Damage InÂVitro. Cellular and Molecular Neurobiology, 2007, 27, 889-899.	3.3	24
41	Activation of the α7 nicotinic acetylcholine receptor upregulates blood-brain barrier function through increased claudin-5 and occludin expression in rat brain endothelial cells. Neuroscience Letters, 2019, 694, 9-13.	2.1	24
42	Oligodendrocytes upregulate blood-brain barrier function through mechanisms other than the PDGF-BB/PDGFRα pathway in the barrier-tightening effect of oligodendrocyte progenitor cells. Neuroscience Letters, 2020, 715, 134594.	2.1	24
43	Brain-transportable soy dipeptide, Tyr-Pro, attenuates amyloid β peptide25-35-induced memory impairment in mice. Npj Science of Food, 2020, 4, 7.	5.5	24
44	The Neuroinflammatory Role of Pericytes in Epilepsy. Biomedicines, 2021, 9, 759.	3.2	24
45	Adrenomedullin-induced relaxation of rat brain pericytes is related to the reduced phosphorylation of myosin light chain through the cAMP/PKA signaling pathway. Neuroscience Letters, 2009, 449, 71-75.	2.1	23
46	Contrast Media Increase Vascular Endothelial Permeability by Inhibiting Nitric-Oxide Production. Investigative Radiology, 2002, 37, 13-19.	6.2	18
47	Cyclophilin A secreted from fibroblast-like synoviocytes is involved in the induction of CD147 expression in macrophages of mice with collagen-induced arthritis. Journal of Inflammation, 2012, 9, 44.	3.4	18
48	Oncostatin M–induced bloodâ€brain barrier impairment is due to prolonged activation of STAT3 signaling in vitro. Journal of Cellular Biochemistry, 2018, 119, 9055-9063.	2.6	18
49	Serum amyloid A-induced blood-brain barrier dysfunction associated with decreased claudin-5 expression in rat brain endothelial cells and its inhibition by high-density lipoprotein in vitro. Neuroscience Letters, 2020, 738, 135352.	2.1	16
50	Oncostatin-M-Reactive Pericytes Aggravate Blood–Brain Barrier Dysfunction by Activating JAK/STAT3 Signaling In Vitro. Neuroscience, 2019, 422, 12-20.	2.3	15
51	Cyclosporine A-increased nitric oxide production in the rat dorsal hippocampus mediates convulsions. Life Sciences, 2002, 72, 549-556.	4.3	14
52	Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons. Biochemical and Biophysical Research Communications, 2015, 457, 532-537.	2.1	13
53	Cyclosporin A Aggravates Electroshock-Induced Convulsions in Mice with a Transient Middle Cerebral Artery Occlusion. Cellular and Molecular Neurobiology, 2005, 25, 923-928.	3.3	12
54	Analysis of Catecholamine and Their Metabolites in Mice Brain by Liquid Chromatography-Mass Spectrometry Using Sulfonated Mixed-mode Copolymer Column. Analytical Sciences, 2019, 35, 433-439.	1.6	12

#	Article	IF	CITATIONS
55	Reactive pericytes in early phase are involved in glial activation and late-onset hypersusceptibility to pilocarpine-induced seizures in traumatic brain injury model mice. Journal of Pharmacological Sciences, 2021, 145, 155-165.	2.5	11
56	Elevated permeability of the blood–brain barrier in mice intratracheally administered porcine pancreatic elastase. Journal of Pharmacological Sciences, 2015, 129, 78-81.	2.5	9
57	Levetiracetam Suppresses the Infiltration of Neutrophils and Monocytes and Downregulates Many Inflammatory Cytokines during Epileptogenesis in Pilocarpine-Induced Status Epilepticus Mice. International Journal of Molecular Sciences, 2022, 23, 7671.	4.1	8
58	Alpha Adrenergic Induction of Transport of Lysosomal Enzyme across the Blood-Brain Barrier. PLoS ONE, 2015, 10, e0142347.	2.5	6
59	Feeding-produced subchronic high plasma levels of uric acid improve behavioral dysfunction in 6-hydroxydopamine-induced mouse model of Parkinson's disease. Behavioural Pharmacology, 2019, 30, 89-94.	1.7	6
60	Partial hepatectomy aggravates cyclosporin A-induced neurotoxicity by lowering the function of the blood–brain barrier in mice. Life Sciences, 2011, 88, 529-534.	4.3	5
61	MAP Kinase Pathways in Brain Endothelial Cells and Crosstalk with Pericytes and Astrocytes Mediate Contrast-Induced Blood–Brain Barrier Disruption. Pharmaceutics, 2021, 13, 1272.	4.5	5
62	Subchronic treatment with cyclosporin A decreases the binding properties of the GABAA receptor in ovariectomized rats. Life Sciences, 2002, 72, 425-430.	4.3	4
63	Increased Plasma VEGF Levels in Patients with Cerebral Large Artery Disease Are Associated with Cerebral Microbleeds. Cerebrovascular Diseases Extra, 2019, 9, 25-30.	1.5	1
64	Dysregulation of the CNS supporting vascular and glial cells induces the late posttraumatic epilepsy in mice with mild traumatic brain injury. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-1-87.	0.0	1
65	HIV-1 transport across the blood–brain barrier is enhanced by lipopolysaccharide. Brain, Behavior, and Immunity, 2006, 20, 15.	4.1	0
66	Inflammatory Mediators Released by Brain Pericytes as Sensors and Effectors in Blood-Brain Barrier Dysfunction. Pancreatic Islet Biology, 2021, , 145-164.	0.3	0
67	Oncostatin M downregulates the brain endothelial barrier integrity through long-lasting activation of JAK/STAT3 pathway. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-43.	0.0	0
68	In response to monomeric α-synuclein, brain pericytes release inflammatory cytokines to impair brain endothelial barrier. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-28.	0.0	0
69	Effect of the heat-not-burn tobacco-extracted substances on the brain endothelial barrier function in vitro. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-13-5.	0.0	Ο