Alena Gornakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6240569/publications.pdf

Version: 2024-02-01

840776 526287 27 906 11 27 citations h-index g-index papers 27 27 27 880 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The α → ω Transformation in Titanium-Cobalt Alloys under High-Pressure Torsion. Metals, 2018, 8, 1.	2.3	281
2	Review: grain boundary faceting–roughening phenomena. Journal of Materials Science, 2016, 51, 382-404.	3.7	97
3	Phase Transformations in Ti–Fe Alloys Induced by Highâ€Pressure Torsion. Advanced Engineering Materials, 2015, 17, 1835-1841.	3.5	95
4	Grain Boundary Wetting by a Second Solid Phase in Ti-Fe Alloys. Journal of Materials Engineering and Performance, 2018, 27, 4989-4992.	2.5	87
5	Grain Boundary Wetting by a Second Solid Phase in the Zr-Nb Alloys. Journal of Materials Engineering and Performance, 2012, 21, 721-724.	2.5	82
6	Formation of the ω Phase in the Titanium—Iron System under Shear Deformation. JETP Letters, 2020, 111, 568-574.	1.4	65
7	Growth of (αTi) grain-boundary layers in Ti–Co alloys. Russian Journal of Non-Ferrous Metals, 2016, 57, 703-709.	0.6	53
8	Formation regularities of grain-boundary interlayers of the \hat{l} ±-Ti phase in binary titanium alloys. Russian Journal of Non-Ferrous Metals, 2016, 57, 229-235.	0.6	26
9	Structural and Mechanical Properties of Ti–Co Alloys Treated by High Pressure Torsion. Materials, 2019, 12, 426.	2.9	22
10	Effect of the wetting of grain boundaries on the formation of a solid solution in the Al-Zn system. JETP Letters, 2012, 96, 380-384.	1.4	20
11	Grain Boundary Wetting Phenomena in High Entropy Alloys Containing Nitrides, Carbides, Borides, Silicides, and Hydrogen: A Review. Crystals, 2021, 11, 1540.	2.2	13
12	Faceting–roughening of twin grain boundaries. Journal of Materials Science, 2012, 47, 1641-1646.	3.7	11
13	Reversible transformation of a grain-boundary facet into a rough-to-rough ridge in zinc. Philosophical Magazine Letters, 2008, 88, 27-36.	1.2	8
14	Influence of Î ² -Stabilizers on the α-Tiâ†'ω-Ti Transformation in Ti-Based Alloys. Processes, 2020, 8, 1135.	2.8	7
15	Continuous and Discontinuous $\hat{l}\pm Ti$ Layers Between Grains of $\hat{l}^2(Ti,Co)$ Phase. Journal of Materials Engineering and Performance, 2014, 23, 1580-1584.	2.5	6
16	Omega Phase Formation in Ti–3wt.%Nb Alloy Induced by High-Pressure Torsion. Materials, 2021, 14, 2262.	2.9	6
17	Energetics of intergranular and interphase boundaries in Ti–6Al–4V alloy. Journal of Materials Science, 2020, 55, 9225-9236.	3.7	5
18	Solid-phase wetting at grain boundaries in the Zr-Nb system. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 102-105.	0.6	4

#	Article	IF	CITATIONS
19	Grain boundary ridges slow dawn grain boundary motion: In-situ observation. Materials Letters, 2014, 124, 24-27.	2.6	4
20	Î ² -Ti-Based Alloys for Medical Applications. Russian Journal of Non-Ferrous Metals, 2021, 62, 54-63.	0.6	4
21	Grain boundary faceting-roughening in Zn. Crystallography Reports, 2009, 54, 1070-1078.	0.6	3
22	Formation and Thermal Stability of the ï‰-Phase in Ti–Nb and Ti–Mo Alloys Subjected to HPT. Materials, 2022, 15, 4136.	2.9	2
23	Grain boundary wetting in the Al-Mg system and synthesis of magnesium diboride in contact with melt. Bulletin of the Russian Academy of Sciences: Physics, 2009, 73, 1199-1201.	0.6	1
24	Crystallochemiluminescence of solutions. Crystallography Reports, 2014, 59, 758-761.	0.6	1
25	Hysteresis of the Grain-Boundary Mobility during Grain-Boundary Phase Transitions. Russian Metallurgy (Metally), 2020, 2020, 1050-1054.	0.5	1
26	β-Ti-based alloys for medical applications. Russian Journal of Non-Ferrous Metals, 2020, , 52-64.	0.1	1
27	Phase Transformations and Mechanical Properties of Two-Component Titanium Alloys after Heat Treatment in the Two-Phase Region (\hat{l} ± + Intermetallic Compound) and High-Pressure Torsion. Journal of Surface Investigation, 2021, 15, 1154-1158.	0.5	1