Ayumi Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6240233/publications.pdf Version: 2024-02-01

Δνιιμι Ιςμιι

#	Article	IF	CITATIONS
1	Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Science Advances, 2020, 6, .	10.3	163
2	<i>>V</i> _{OC} Over 1.4 V for Amorphous Tin-Oxide-Based Dopant-Free CsPbI ₂ Br Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 9725-9734.	13.7	162
3	Gate-Tunable Atomically Thin Lateral MoS ₂ Schottky Junction Patterned by Electron Beam. Nano Letters, 2016, 16, 3788-3794.	9.1	99
4	Structural and spectroscopic properties of a copper(I)–bis(N-heterocyclic)carbene complex. Dalton Transactions, 2009, , 6795.	3.3	67
5	Dopantâ€Free Polymer HTMâ€Based CsPbl ₂ Br Solar Cells with Efficiency Over 17% in Sunlight and 34% in Indoor Light. Advanced Functional Materials, 2021, 31, 2103614.	14.9	60
6	Conformation-Controlled Luminescent Properties of Lanthanide Clusters Containingp-tert-Butylsulfonylcalix[4]arene. Inorganic Chemistry, 2006, 45, 4880-4882.	4.0	54
7	Sensitized Yb ³⁺ Luminescence in CsPbCl ₃ Film for Highly Efficient Nearâ€Infrared Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 1903142.	11.2	54
8	Roadmap on Recent Progress in FINCH Technology. Journal of Imaging, 2021, 7, 197.	3.0	51
9	Luminescence behaviour in acetonitrile and in the solid state of a series of lanthanide complexes with a single helical ligand. New Journal of Chemistry, 2014, 38, 1225-1234.	2.8	47
10	Picosecond time-resolved luminescence of Pr(III) complexes: Intramolecular excitation energy transfer from ligand to Pr(III). Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 220-224.	3.9	43
11	Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities. Applied Physics Letters, 2020, 117, .	3.3	39
12	Fully crystalline perovskite-perylene hybrid photovoltaic cell capable of 1.2 V output with a minimized voltage loss. APL Materials, 2014, 2, .	5.1	37
13	Highly Luminescent Superparamagnetic Diterbium(III) Complex Based on the Bifunctionality of <i>p</i> â€ <i>tert</i> â€Butylsulfonylcalix[4]arene. European Journal of Inorganic Chemistry, 2008, 2008, 5565-5568.	2.0	36
14	MAClâ€Assisted Ge Doping of Pbâ€Hybrid Perovskite: A Universal Route to Stabilize High Performance Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903299.	19.5	36
15	Two-step phase-shifting interferometry for self-interference digital holography. Optics Letters, 2021, 46, 669.	3.3	35
16	Organic Dye Adsorption by Amphiphilic Trisâ€Urea Supramolecular Hydrogel. Chemistry - an Asian Journal, 2017, 12, 2029-2032.	3.3	28
17	Large edge magnetism in oxidized few-layer black phosphorus nanomeshes. Nano Research, 2017, 10, 718-728.	10.4	27
18	Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited]. Applied Optics, 2021, 60, A260.	1.8	27

Ауимі Ізніі

#	Article	IF	CITATIONS
19	An Interfacial Europium Complex on SiO2 Nanoparticles: Reduction-Induced Blue Emission System. Scientific Reports, 2015, 5, 11714.	3.3	25
20	Cationâ€Tuned Stimuliâ€Responsive and Optical Properties of Supramolecular Hydrogels. Chemistry - an Asian Journal, 2015, 10, 1299-1303.	3.3	23
21	Water-soluble lanthanide complexes with a helical ligand modified for strong luminescence in a wide pH region. New Journal of Chemistry, 2017, 41, 6385-6394.	2.8	22
22	Luminescence of fusion materials of polymeric chain-structured lanthanide complexes. Polymer Journal, 2015, 47, 195-200.	2.7	21
23	A high voltage organic–inorganic hybrid photovoltaic cell sensitized with metal–ligand interfacial complexes. Chemical Communications, 2012, 48, 9900.	4.1	19
24	Cesium Acetate-Induced Interfacial Compositional Change and Graded Band Level in MAPbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 33631-33637.	8.0	18
25	Europium amphiphilic naphthalene based complex for the enhancement of linearly polarized luminescence in Langmuir–Blodgett films. New Journal of Chemistry, 2019, 43, 6472-6479.	2.8	17
26	Polymorphism-based luminescence of lanthanide complexes with a deuterated 1,10-phenanthroline. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 334, 55-60.	3.9	15
27	Thin-film formation for promoting the potential of luminescent lanthanide coordination complexes. Coordination Chemistry Reviews, 2020, 421, 213458.	18.8	15
28	Quantum cutting-induced near-infrared luminescence of Yb3+ and Er3+ in a layer structured perovskite film. Journal of Chemical Physics, 2020, 153, 194704.	3.0	14
29	Chiroptical Spectroscopic Studies on Lanthanide Complexes with Valinamide Derivatives in Solution. ChemPlusChem, 2020, 85, 294-300.	2.8	14
30	Novel emission properties of melem caused by the heavy metal effect of lanthanides(iii) in a LB film. Photochemical and Photobiological Sciences, 2007, 6, 804.	2.9	13
31	The key role of accurate lattice parameters in revealing subtle structural differences—a case study in the system [Ln(phen/phen-d8)2(NO3)3]. CrystEngComm, 2009, 11, 1197.	2.6	13
32	Excitation energy transfer between D3h melamines and Pr(III) in the solid state. Science and Technology of Advanced Materials, 2006, 7, 72-76.	6.1	12
33	Alkyl chain elongation and acyl group effects in a series of Eu/Tb complexes with hexadentate ï€-electronic skeletons and their enhanced luminescence in solutions. Dalton Transactions, 2018, 47, 7135-7143.	3.3	12
34	The Enhanced Intramolecular Energy Transfer and Strengthened ff Luminescence of a Stable Helical Eu Complex in Ionic Liquids. Molecules, 2018, 23, 55.	3.8	12
35	Evaluation of Damage Coefficient for Minority-Carrier Diffusion Length of Triple-Cation Perovskite Solar Cells under 1 MeV Electron Irradiation for Space Applications. Journal of Physical Chemistry C, 2021, 125, 13131-13137.	3.1	12
36	Molecular Distortion Effect on ff-Emission in a Pr(III) Complex with 4,7-Diphenyl-1,10-Phenanthroline. ChemPhysChem, 2007, 8, 1345-1351.	2.1	11

Ауимі Ізніі

#	Article	IF	CITATIONS
37	A Metallocene Molecular Complex as Visibleâ€Light Absorber for Highâ€Voltage Organic–Inorganic Hybrid Photovoltaic Cells. ChemPhysChem, 2014, 15, 1028-1032.	2.1	11
38	The Ethanol-induced Interfacial Reduction of a Europium Complex on SiO ₂ Nanoparticles. Chemistry Letters, 2016, 45, 1265-1267.	1.3	11
39	Solar-Pumping Upconversion of Interfacial Coordination Nanoparticles. Scientific Reports, 2017, 7, 41446.	3.3	11
40	Sensitive Photodetection with Photomultiplication Effect in an Interfacial Eu ^{2+/3+} Complex on a Mesoporous TiO ₂ Film. ACS Applied Materials & Interfaces, 2018, 10, 5706-5713.	8.0	11
41	Photomultiplying Visible Light Detection by Halide Perovskite Nanoparticles Hybridized with an Organo Eu Complex. Journal of Physical Chemistry Letters, 2019, 10, 5935-5942.	4.6	11
42	Gelation and luminescence of lanthanide hydrogels formed with deuterium oxide. RSC Advances, 2019, 9, 1949-1955.	3.6	11
43	Lanthanide-Oligomeric Brush Films: From Luminescence Properties to Structure Resolution. ACS Omega, 2019, 4, 15512-15520.	3.5	10
44	Polarized ff-Emission of Terbium(III) by using the Stretched Polymer Film Technique. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 333-338.	0.3	9
45	Intramolecular Excited Energy Transfer from Phenanthroline Fluorophore to Pr(III) in a Metal Complex. Chemistry Letters, 2005, 34, 1418-1419.	1.3	8
46	Multicolor upconversion luminescence of dye-coordinated Er ³⁺ at the interface of Er ₂ O ₃ and CaF ₂ nanoparticles. Science and Technology of Advanced Materials, 2019, 20, 44-50.	6.1	8
47	Aspects of lanthanide complexes for selectivity, intensity and sharpness in luminescence bands from twenty-four praseodymium, europium and gadolinium complexes with differently distorted-hexadentate ligands. Photochemical and Photobiological Sciences, 2020, 19, 1054-1062.	2.9	8
48	The unprecedented role of a Cull cryptand in the luminescence properties of a Eulll cryptate complex. Monatshefte Für Chemie, 2009, 140, 783-787.	1.8	7
49	Making graphene luminescent by adsorption of an amphiphilic europium complex. Applied Physics Letters, 2018, 112, .	3.3	7
50	Lanthanide Luminescence Enhancement of Core–Shell Magnetite–SiO ₂ Nanoparticles Covered with Chain-Structured Helical Eu/Tb Complexes. ACS Omega, 2020, 5, 32930-32938.	3.5	7
51	Remarkable Functions of Longâ€Chain Alkyl Groups in Halogenâ€Bridged Nickel(III) Nanowire Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4425-4428.	2.0	6
52	Phosphorescence Resulting from Interaction between Two Nonâ€equivalent Metals on a Helical π onjugated Surface. Chemistry - an Asian Journal, 2018, 13, 1902-1905.	3.3	5
53	Strong Luminescent Europium Complexes Induced by the Unprecedented Anti-chelate Effect of Acyl Groups on a <i>N</i> ⁶ -Hexadentate Ligand. Chemistry Letters, 2019, 48, 593-596.	1.3	5
54	Preparation of Tetrazole-fused π-Conjugated Molecules and Their Fluorescence Behavior. Chemistry Letters, 2019, 48, 662-665.	1.3	3

Ауимі Ізніі

#	Article	IF	CITATIONS
55	Development of Photofunctional Devices Based on Organic–Inorganic Hybrid Structures. Electrochemistry, 2021, 89, 544-551.	1.4	1
56	Phase-shifting interferometry for multidimensional incoherent digital holography and toward ultimately low light sensing. , 2021, , .		1
57	Lightâ€Emitting Diodes: Sensitized Yb ³⁺ Luminescence in CsPbCl ₃ Film for Highly Efficient Nearâ€Infrared Lightâ€Emitting Diodes (Adv. Sci. 4/2020). Advanced Science, 2020, 7, 2070021.	11.2	0
58	Highly Efficient Near-Infrared Luminescence of Yb(III) doped Perovskite Thin Films for Light-Emitting Device Applications. , 0, , .		0
59	Multidimensional digital holographic microscopy based on computational coherent superposition for coherent and incoherent light sensing. , 2020, , .		0