
Vikram Jadhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6240180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional. Physical Review Letters, 2012, 109, 223905.	7.8	68
2	Probing large viscosities in glass-formers with nonequilibrium simulations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7952-7957.	7.1	60
3	lonic structure in liquids confined by dielectric interfaces. Journal of Chemical Physics, 2015, 143, 194508.	3.0	50
4	A variational formulation of electrostatics in a medium with spatially varying dielectric permittivity. Journal of Chemical Physics, 2013, 138, 054119.	3.0	39
5	Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication. Tribology Letters, 2019, 67, 1.	2.6	37
6	Machine learning surrogates for molecular dynamics simulations of soft materials. Journal of Computational Science, 2020, 42, 101107.	2.9	31
7	Electrostatics-driven shape transitions in soft shells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12673-12678.	7.1	30
8	Learning Everywhere: Pervasive Machine Learning for Effective High-Performance Computation. , 2019,		28
9	Linker-Mediated Assembly of Virus-Like Particles into Ordered Arrays via Electrostatic Control. ACS Applied Bio Materials, 2019, 2, 2192-2201.	4.6	21
10	Coulomb energy of uniformly charged spheroidal shell systems. Physical Review E, 2015, 91, 032305.	2.1	19
11	Machine learning for parameter auto-tuning in molecular dynamics simulations: Efficient dynamics of ions near polarizable nanoparticles. International Journal of High Performance Computing Applications, 2020, 34, 357-374.	3.7	13
12	Probing the Rheological Properties of Liquids Under Conditions of Elastohydrodynamic Lubrication Using Simulations and Machine Learning. Tribology Letters, 2021, 69, 1.	2.6	12
13	Ionic structure and decay length in highly concentrated confined electrolytes. AIP Advances, 2020, 10,	1.3	12
14	Generating true minima in constrained variational formulations via modified Lagrange multipliers. Physical Review E, 2013, 88, 053306.	2.1	10
15	Free-energy functionals of the electrostatic potential for Poisson-Boltzmann theory. Physical Review E, 2013, 88, 022305.	2.1	9
16	Computational studies of shape control of charged deformable nanocontainers. Journal of Materials Chemistry B, 2019, 7, 6370-6382.	5.8	8
17	Machine Learning for Performance Enhancement of Molecular Dynamics Simulations. Lecture Notes in Computer Science, 2019, , 116-130.	1.3	8
18	Multilayered Ordered Protein Arrays Self-Assembled from a Mixed Population of Virus-like Particles. ACS Nano, 2022, 16, 7662-7673.	14.6	8

Vikram Jadhao

#	Article	IF	CITATIONS
19	Molecular Dynamics Simulations on Cloud Computing and Machine Learning Platforms. , 2021, , .		7
20	Solving Newton's equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology, 2022, 3, 025002.	5.0	7
21	Designing Surface Charge Patterns for Shape Control of Deformable Nanoparticles. Physical Review Letters, 2020, 125, 248001.	7.8	4
22	Integrating Machine Learning with HPC-driven Simulations for Enhanced Student Learning. , 2020, , .		4
23	Reply to Bair: Crossover to Arrhenius behavior at high viscosities in squalane. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8807-E8808.	7.1	3
24	SciSpot: Scientific Computing On Temporally Constrained Cloud Preemptible VMs. IEEE Transactions on Parallel and Distributed Systems, 2022, , 1-1.	5.6	0