Xiaobo Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6239402/publications.pdf

Version: 2024-02-01

759233 752698 20 582 12 h-index citations papers

g-index 24 24 24 782 docs citations times ranked citing authors all docs

20

#	Article	IF	CITATIONS
1	Supramolecular Nanostructures of Chiral Perylene Diimides with Amplified Chirality for Highâ€Performance Chiroptical Sensing. Advanced Materials, 2017, 29, 1605828.	21.0	129
2	Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors. Nature Communications, 2018, 9, 3933.	12.8	85
3	Halogen Bonding Tetraphenylethene Anion Receptors: Anionâ€Induced Emissive Aggregates and Photoswitchable Recognition. Angewandte Chemie - International Edition, 2021, 60, 19442-19450.	13.8	49
4	High-Performance Visible-Blind UV Phototransistors Based on n-Type Naphthalene Diimide Nanomaterials. ACS Applied Materials & Interfaces, 2018, 10, 11826-11836.	8.0	34
5	Emerging materials for circularly polarized light detection. Journal of Materials Chemistry C, 2022, 10, 2400-2410.	5. 5	34
6	Surface-Doped Quasi-2D Chiral Organic Single Crystals for Chiroptical Sensing. ACS Nano, 2020, 14, 14146-14156.	14.6	33
7	Highly Enantioselective Graphene-Based Chemical Sensors Prepared by Chiral Noncovalent Functionalization. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36194-36201.	8.0	32
8	Copperâ€Catalyzed Cascade Cyclization Reaction of 2â€Haloaryltriazenes and Sodium Azide: Selective Synthesis of 2 <i>H</i> àêBenzotriazoles in Water. Chemistry - A European Journal, 2014, 20, 1825-1828.	3.3	29
9	Morphogenesis and Optoelectronic Properties of Supramolecular Assemblies of Chiral Perylene Diimides in a Binary Solvent System. Scientific Reports, 2017, 7, 5508.	3.3	28
10	Tuning the supramolecular chirality and optoelectronic performance of chiral perylene diimide nanowires <i>via N</i> -substituted side chain engineering. Journal of Materials Chemistry C, 2019, 7, 8688-8697.	5 . 5	23
11	Bay-Substitution Effect of Perylene Diimides on Supramolecular Chirality and Optoelectronic Properties of Their Self-Assembled Nanostructures. ACS Applied Materials & Samp; Interfaces, 2021, 13, 12278-12285.	8.0	16
12	Micro-/nano-sized multifunctional heterochiral metal–organic frameworks for high-performance visible–blind UV photodetectors. Journal of Materials Chemistry C, 2021, 9, 7310-7318.	5 . 5	14
13	Optoelectronic Property Modulation in Chiral Organic Semiconductor/Polymer Blends. ACS Applied Materials & Divided Materials & Divided Research (2020), 12, 49926-49934.	8.0	13
14	BF ₃ ·OEt ₂ â€Promoted Intramolecular Nucleophilic Substitution; Synthesis of Dibenzopyranones and Coumarins from Biaryltriazenes. European Journal of Organic Chemistry, 2013, 2013, 5475-5484.	2.4	11
15	A Simple and Efficient Synthesis of Dibenzothiophene via BF3·OEt2-Promoted Intramolecular Annulation. Synlett, 2013, 24, 851-854.	1.8	11
16	Heterochiral Doped Supramolecular Coordination Networks for High-Performance Optoelectronics. ACS Applied Materials & Diterfaces, 2019, 11, 20174-20182.	8.0	11
17	"Majorityâ€Rules―Effect on Supramolecular Chirality and Optoelectronic Properties of Chiral Tetrachloroâ€Perylene Diimides. Advanced Optical Materials, 2021, 9, 2001911.	7.3	10
18	Silver(I)-promoted intramolecular addition of N-heterocyclic carbenes towards unsaturated esters in water. Tetrahedron, 2014, 70, 3073-3077.	1.9	8

#	Article	IF	CITATIONS
19	Effects of microwave-assisted annealing on the morphology and electrical performance of semiconducting polymer thin films. Organic Electronics, 2016, 30, 207-212.	2.6	7
20	Highly Efficient Method for the Synthesis of 1,4-Phenylenedithioureas Under Solvent- and Catalyst-Free Conditions Promoted by Microwave Irridiation. Synthetic Communications, 2012, 42, 1045-1052.	2.1	5