
Subhash Chandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6239371/publications.pdf Version: 2024-02-01

SUBHASH CHANDRA

#	Article	IF	CITATIONS
1	An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications. Optical Materials, 2019, 91, 212-227.	3.6	102
2	Absorption coefficient dependent non-linear properties of thin film luminescent solar concentrators. Solar Energy Materials and Solar Cells, 2018, 182, 331-338.	6.2	19
3	Solid state additive manufacture of highly-reflective Al coatings using cold spray. Optics and Laser Technology, 2019, 115, 251-256.	4.6	16
4	Two step continuous method to synthesize colloidal spheroid gold nanorods. Journal of Colloid and Interface Science, 2015, 459, 218-223.	9.4	14
5	Broadband plasmonic coupling and enhanced power conversion efficiency in luminescent solar concentrator. Solar Energy Materials and Solar Cells, 2019, 203, 110150.	6.2	13
6	Unified Methodology for Fabrication and Quantification of Gold Nanorods, Gold Core Silver Shell Nanocuboids, and Their Polymer Nanocomposites. Langmuir, 2019, 35, 13011-13019.	3.5	10
7	Small and large scale plasmonically enhanced luminescent solar concentrator for photovoltaic applications: modelling, optimisation and sensitivity analysis. Optics Express, 2021, 29, 15031.	3.4	8
8	Polarization-sensitive anisotropic plasmonic properties of quantum dots and Au nanorod composites. Optics Express, 2020, 28, 20191.	3.4	8
9	The Viability of Organic Dyes in Luminescent Down-Shifting Layers for the Enhancement of Si Solar Cell Efficiency. Materials Science Forum, 0, 995, 71-76.	0.3	6
10	Monte Carlo Ray Tracing Modelling of Multi-Crystalline Silicon Photovoltaic Device Enhanced by Luminescent Material. , 2018, , .		2
11	Fluorescent organic dyes in a silicone encapsulant composite for Luminescent Solar Concentrators. , 2018, , .		2
12	Optimized 3D Finite-Difference-Time-Domain Algorithm to Model the Plasmonic Properties of Metal Nanoparticles with Near-Unity Accuracy. Chemosensors, 2021, 9, 114.	3.6	2
13	Towards Reducing Computational Costs of Finite Difference Time Domain Algorithm in Plasmonic Optical Properties Modelling of Metal Nanoparticles. Materials Science Forum, 0, 995, 203-208.	0.3	1
14	Outdoor Characterization of a Plasmonic Luminescent Solar Concentrator. Plasmonics, 2022, 17, 725-734.	3.4	1
15	Implementation and Optimization of a Luminescent Down-Shifting Photovoltaic System for Use in a Compound Parabolic Concentrator. Innovative Renewable Energy, 2022, , 889-895.	0.4	1
16	Doping Concentration Tuning and Plasmonic Optical Properties Modelling of Metal Nano Particles Utilizing FDTD Method. Materials Science Forum, 0, 995, 197-202.	0.3	0