Massimo Guglielmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6239219/publications.pdf

Version: 2024-02-01

93792 107981 5,873 194 39 68 citations g-index h-index papers 197 197 197 6136 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Glass: The best material for pharmaceutical packaging. International Journal of Applied Glass Science, 2022, 13, 281-291.	1.0	8
2	Bioinspired silica-based sol–gel micropatterns on aluminium for humid air condensation. Journal of Sol-Gel Science and Technology, 2022, 102, 466-477.	1.1	5
3	Laboratory intercomparison for the evaluation of the delamination propensity of glass containers for pharmaceutical use. International Journal of Applied Glass Science, 2021, 12, 135-144.	1.0	4
4	SILAR Deposition of Metal Oxide Nanostructured Films. Small, 2021, 17, e2101666.	5.2	33
5	Glass-ceramic composites for high-power white-light-emitting diodes. Ceramics International, 2021, 47, 17986-17992.	2.3	10
6	Nanocrystalline TiO2 Sensitive Layer for Plasmonic Hydrogen Sensing. Nanomaterials, 2020, 10, 1490.	1.9	4
7	From past research experiences looking to the future of sol–gel. Journal of Sol-Gel Science and Technology, 2020, 95, 494-502.	1.1	3
8	Optical gas sensors. , 2020, , 271-292.		1
9	Semiconductor quantum dot-doped sol–gel materials. , 2020, , 209-226.		1
10	SiO2–TiO2 multilayer via electrochemical deposition: characterization of reflection and refractive index. Journal of Sol-Gel Science and Technology, 2019, 89, 196-204.	1,1	10
11	Delamination Propensity of Glass Containers for Pharmaceutical Use: A Round Robin Activity Looking for a Predictive Test. PDA Journal of Pharmaceutical Science and Technology, 2018, 72, 553-565.	0.3	5
12	Sol-gel nanocomposites for optical applications. Journal of Sol-Gel Science and Technology, 2018, 88, 551-563.	1,1	12
13	Electrochemically Deposited Sol–Gel Based Nanoparticle-Imprinted Matrices for the Size-Selective Detection of Gold Nanoparticles. ACS Applied Nano Materials, 2018, 1, 5612-5619.	2.4	12
14	Structural Characterization of Hybrid Organic–Inorganic Materials. , 2018, , 1375-1397.		1
15	Sol-Gel Nanocomposites., 2018,, 3041-3063.		4
16	Electrochemical 3D-growth of amorphous silica gel. Journal of Electroanalytical Chemistry, 2017, 784, 153-158.	1.9	5
17	Near Infrared Plasmonic Gas Sensing with Doped Metal Oxide Nanocrystals. Proceedings (mdpi), 2017, 1 , \cdot	0.2	3
18	Multilayer Deposition of Silica Sol–Gel Films by Electrochemical Assisted Techniques. Journal of Physical Chemistry C, 2016, 120, 28820-28824.	1.5	11

#	Article	IF	CITATIONS
19	Degenerately Doped Metal Oxide Nanocrystals as Plasmonic and Chemoresistive Gas Sensors. ACS Applied Materials & Sensors. ACS Applie	4.0	58
20	Sol–Gel Nanocomposites. , 2016, , 1-23.		4
21	Structural Characterization of Hybrid Organic–Inorganic Materials. , 2016, , 1-23.		0
22	ZnO nanorods grown on ZnO sol–gel seed films: Characteristics and optical gas-sensing properties. Sensors and Actuators B: Chemical, 2015, 213, 493-500.	4.0	38
23	Plasmonic Sensors for Aromatic Hydrocarbon Detection. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , 487-489.	0.2	0
24	Electrochemical deposition of silica sol–gel films on stainless steel: preliminary analysis of key variables. Journal of Sol-Gel Science and Technology, 2015, 76, 233-240.	1.1	13
25	Grating-coupled surface plasmon resonance gas sensing based on titania anatase nanoporous films. Proceedings of SPIE, 2015, , .	0.8	0
26	Au and Pt Nanoparticles Effects on the Optical and Electrical Gas Sensing Properties of Sol–Gel-Based ZnO Thin-Film Sensors. IEEE Sensors Journal, 2015, 15, 1068-1076.	2.4	45
27	Transmetallation as an effective strategy for the preparation of bimetallic CoPd and CuPd nanoparticles. Nanoscale, 2014, 6, 1560-1566.	2.8	8
28	Effect of Crystalline Phase and Composition on the Catalytic Properties of PdSn Bimetallic Nanoparticles in the PROX Reaction. Journal of Physical Chemistry C, 2014, 118, 25392-25402.	1.5	16
29	Synthesis Strategies for the Preparation of Sol-Gel Nanocomposites. , 2014, , 51-82.		2
30	Aggregation of dipolar molecules in SiO2 hybrid organic–inorganic films: use of silver nanoparticles as inhibitors of molecular aggregation. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	1
31	Xylene sensing properties of aryl-bridged polysilsesquioxane thin films coupled to gold nanoparticles. Journal of Materials Chemistry C, 2013, 1, 4252.	2.7	23
32	Natural rubber/ <i>cis</i> à€1,4â€polybutadiene nanocomposites: Vulcanization behavior, mechanical properties, and thermal stability. Polymer Engineering and Science, 2013, 53, 671-678.	1.5	6
33	Reducing gases and VOCs optical sensing using surface plasmon spectroscopy of porous TiO2–Au colloidal films. Sensors and Actuators B: Chemical, 2013, 187, 363-370.	4.0	16
34	Low-Temperature Processed Ga-Doped ZnO Coatings from Colloidal Inks. Journal of the American Chemical Society, 2013, 135, 3439-3448.	6.6	106
35	Short and long range surface plasmon polariton waveguides for xylene sensing. Nanotechnology, 2013, 24, 155502.	1.3	32
36	Optimized Electroless Silver Coating for Optical and Plasmonic Applications. Plasmonics, 2012, 7, 633-639.	1.8	32

#	Article	IF	Citations
37	CO optical sensing properties of nanocrystalline ZnO–Au films: Effect of doping with transition metal ions. Sensors and Actuators B: Chemical, 2012, 161, 675-683.	4.0	45
38	Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films. Sensors and Actuators B: Chemical, 2012, 164, 54-63.	4.0	69
39	CdSe Coreâ^'Shell Nanoparticles as Active Materials for Up-Converted Emission. Journal of Physical Chemistry C, 2011, 115, 3840-3846.	1.5	16
40	Facile production of up-converted quantum dot lasers. Nanoscale, 2011, 3, 4109.	2.8	18
41	Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties. Journal of Materials Chemistry, 2011, 21, 4293.	6.7	43
42	Role of Au Nanoparticles and NiTiO ₃ Matrix in H ₂ S Sensing and Its Catalytic Oxidation to SO _{<i>x</i>} . Sensor Letters, 2011, 9, 591-594.	0.4	7
43	Novel multifunctional nanocomposites from titanate nanosheets and semiconductor quantum dots. Optical Materials, 2011, 33, 1839-1846.	1.7	10
44	Spectroscopic ellipsometry analyses of thin films in different environments: An innovative "reverse side―approach allowing multi angle measurements. Optical Materials, 2011, 34, 79-84.	1.7	5
45	Positive resist for UV and X-ray lithography synthesized through sol–gel chemistry. Journal of Sol-Gel Science and Technology, 2011, 60, 400-407.	1.1	23
46	Fabrication of functional nanostructured coatings by a combined sol–gel and plasma-enhanced chemical vapour deposition method. Journal of Sol-Gel Science and Technology, 2011, 60, 340-346.	1.1	5
47	Sol–gel research in Italy. Journal of Sol-Gel Science and Technology, 2011, 60, 222-225.	1.1	0
48	Nanocomposites of titania and hybrid matrix with high refractive index. Journal of Nanoparticle Research, 2011, 13, 1697-1708.	0.8	28
49	Hybrid porous resist with sensing functionality. Microelectronic Engineering, 2011, 88, 1913-1916.	1.1	12
50	Structural evolution and hydrogen sulfide sensing properties of NiTiO3–TiO2 sol–gel thin films containing Au nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 716-722.	1.7	36
51	Synthesis and tailoring of CdSe core@shell heterostructures for optical applications., 2011,,.		3
52	One- and two-photon pumped soft lithographed DFB laser systems based on semiconductor core-shell quantum dots. , $2010, \ldots$		2
53	Doubly patternable epoxy based sol–gel structures by UV and soft lithography. Solid State Sciences, 2010, 12, 1890-1893.	1.5	11
54	Active sol–gel thin film on nanostructured plasmonic surface. Solid State Sciences, 2010, 12, 1898-1902.	1.5	6

#	Article	IF	Citations
55	Hybrid organic–inorganic ZnS-loaded nanocomposite films for stable optical coatings. Thin Solid Films, 2010, 518, 6781-6786.	0.8	16
56	Comparison study of conductometric, optical and SAW gas sensors based on porous sol–gel silica films doped with NiO and Au nanocrystals. Sensors and Actuators B: Chemical, 2010, 143, 567-573.	4.0	29
57	Au Nanoparticles in Nanocrystalline TiO ₂ â^'NiO Films for SPR-Based, Selective H ₂ S Gas Sensing. Chemistry of Materials, 2010, 22, 3407-3417.	3.2	103
58	Titanate Nanosheets as High Refractive Layer in Vertical Microcavity Incorporating Semiconductor Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 18423-18428.	1.5	23
59	Photocatalytic Performance of Hybrid SiO ₂ â^'TiO ₂ Films. Journal of Physical Chemistry C, 2010, 114, 7646-7652.	1.5	29
60	Second harmonic generation in SiO2 sol–gel films functionalized with Ethyl-[4-(4-nitro-phenylazo)-phenyl]-(2-oxiranylmethoxy-ethyl)-amine (ENPMA) molecules. Journal of Non-Crystalline Solids, 2010, 356, 1689-1695.	1.5	6
61	Influence of Temperature on the Photocatalytic Activity of Solâ^'Gel TiO2 Films. ACS Applied Materials & Lamp; Interfaces, 2010, 2, 1294-1298.	4.0	26
62	Patterning of Sol–Gel Hybrid Organic–Inorganic Film Doped with Luminescent Semiconductor Quantum Dots. Journal of Nanoscience and Nanotechnology, 2009, 9, 1858-1864.	0.9	11
63	SiO _{<i>x</i>} â€Based Gas Barrier Coatings for Polymer Substrates by Atmospheric Pressure Plasma Jet Deposition. Plasma Processes and Polymers, 2009, 6, S705.	1.6	38
64	Electron beam lithography of hybrid sol–gel negative resist. Microelectronic Engineering, 2009, 86, 745-748.	1.1	13
65	Electron beam writing of epoxy based sol–gel materials. Journal of Sol-Gel Science and Technology, 2008, 48, 212-216.	1.1	11
66	Growth of Cookie-like Au/NiO Nanoparticles in SiO ₂ Sol–Gel Films and Their Optical Gas Sensing Properties. Crystal Growth and Design, 2008, 8, 744-749.	1.4	25
67	Laser damage of glycidoxypropyltrimethoxysilane based hybrid materials. Journal of Non-Crystalline Solids, 2008, 354, 3317-3325.	1.5	1
68	Design of hybrid sol–gel films for direct x-ray and electron beam nanopatterning. Nanotechnology, 2008, 19, 175306.	1.3	32
69	Photonic devices based on patterning by two photon induced polymerization techniques. Proceedings of SPIE, 2008, , .	0.8	1
70	Photopolymerization of hybrid organic/inorganic materials based on nanostructured units for photonic applications., 2007, 6645, 397.		2
71	New sol-gel materials for high energy applications in nonlinear optics. Proceedings of SPIE, 2007, , .	0.8	0
72	Selective optical detection of H ₂ and CO with SiO ₂ sol–gel films containing NiO and Au nanoparticles. Nanotechnology, 2007, 18, 475505.	1.3	36

#	Article	IF	CITATIONS
73	Hybrid glass-like films through sol–gel techniques. Journal of Non-Crystalline Solids, 2007, 353, 1681-1687.	1.5	16
74	Cookie-like Au/NiO Nanoparticles with Optical Gas-Sensing Properties. Advanced Materials, 2007, 19, 561-564.	11.1	133
75	Direct pattern of photocurable glycidoxypropyltrimethoxysilane based sol–gel hybrid waveguides for photonic applications. Materials Science and Engineering C, 2007, 27, 1022-1025.	3.8	17
76	Direct nanopattern of hybrid sol–gel films. Materials Science and Engineering C, 2007, 27, 1382-1385.	3.8	28
77	Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications. Thin Solid Films, 2007, 515, 5787-5791.	0.8	20
78	Au and NiO nanocrystals doped into porous sol–gel SiO2films and the effect on optical CO detection. Nanotechnology, 2006, 17, 2429-2433.	1.3	19
79	Photocurable glycidoxypropyltrimethoxysilane based sol-gel hybrid materials. Progress in Solid State Chemistry, 2006, 34, 223-229.	3.9	37
80	Synthesis of 3-glycidoxypropyltrimethoxysilane-TiO 2 UV-sensitive waveguides. , 2006, , .		0
81	Materials development for CO-detection with improved selectivity through catalytic activation. Sensors and Actuators B: Chemical, 2006, 118, 121-128.	4.0	23
82	Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: Photocatalytic performance and chemical durability. Thin Solid Films, 2006, 502, 112-120.	0.8	153
83	Porous sol gel silica films doped with crystalline NiO nanoparticles for gas sensing applications. Journal of Sol-Gel Science and Technology, 2006, 40, 299-308.	1.1	16
84	Electro-optics poled sol–gel materials doped with heterocycle push–pull chromophores. Materials Science and Engineering C, 2006, 26, 979-982.	3.8	10
85	Wet sol–gel derived silica for controlled release of proteins. Journal of Controlled Release, 2006, 116, 295-303.	4.8	51
86	Novel Sol–Gel Systems for Application in Optical Signal Processing. Molecular Crystals and Liquid Crystals, 2006, 446, 141-150.	0.4	0
87	Evaluation of Silicon Dioxide–Based Coating Enriched with Bioactive Peptides Mapped on Human Vitronectin and Fibronectin: In Vitro and In Vivo Assays. Tissue Engineering, 2006, 12, 3509-3523.	4.9	15
88	Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol–gel films. Sensors and Actuators B: Chemical, 2005, 108, 184-192.	4.0	109
89	Influence of synthesis and processing conditions on the release behavior and stability of sol–gel derived silica xerogels embedded with bioactive compounds. Il Farmaco, 2005, 60, 675-683.	0.9	13
90	Silver-sensitized erbium-doped ion-exchanged sol–gel waveguides. Applied Physics A: Materials Science and Processing, 2005, 80, 557-563.	1.1	57

#	Article	IF	CITATIONS
91	Thermal-induced phase transitions in self-assembled mesostructured films studied by small-angle X-ray scattering. Journal of Synchrotron Radiation, 2005, 12, 734-738.	1.0	35
92	<title>Gold/titania nanocomposites thin films for optical gas sensing devices</title> ., 2005, , .		5
93	PbS-Doped Mesostructured Silica Films with High Optical Nonlinearity. Chemistry of Materials, 2005, 17, 4965-4970.	3.2	52
94	Optical spectroscopy of TeO2–GeO2 glasses activated with Er3+ and Tm3+ ions. Journal of Non-Crystalline Solids, 2005, 351, 1759-1763.	1.5	43
95	Sensitizing effects in Ag-Er codoped glasses for optical amplification. , 2004, 5451, 311.		17
96	Emanation thermal analysis study of a sol-gel precursor for silica-titania waveguides. Journal of Thermal Analysis and Calorimetry, 2004, 76, 43-48.	2.0	7
97	Optical Gas Sensing Properties of Silica Film Doped with Cobalt Oxide Nanocrystals. Journal of Sol-Gel Science and Technology, 2004, 32, 243-246.	1.1	20
98	Sol-gel synthesis of Na+ beta-Al2O3 powders. Journal of the European Ceramic Society, 2004, 24, 911-914.	2.8	25
99	Nanostructured sol–gel silica thin films doped with NiO and SnO2for gas sensing applications. Journal of Materials Chemistry, 2004, 14, 2889-2895.	6.7	43
100	Nucleation and Crystallization of Titania Nanoparticles in Silica Titania Planar Waveguides: a Study by Low Frequency Raman Scattering. Materials Science Forum, 2004, 455-456, 520-526.	0.3	3
101	Poled sol–gel materials doped with heterocycle-based push–pull chromophores with second-order optical non-linearity. Journal of Non-Crystalline Solids, 2004, 345-346, 575-579.	1.5	12
102	NiO-SiO2 Sol-Gel Nanocomposite Films for Optical Gas Sensor. Journal of Sol-Gel Science and Technology, 2003, 26, 993-996.	1.1	49
103	Basic Catalyzed Synthesis of Hybrid Sol-Gel Materials Based on 3-Glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 2003, 26, 303-306.	1.1	22
104	Nucleation of Titania Nanocrystals in Silica Titania Waveguides. Journal of Sol-Gel Science and Technology, 2003, 26, 241-244.	1.1	40
105	Nanostructured Silicon Oxide–Nickel Oxide Sol–Gel Films with Enhanced Optical Carbon Monoxide Gas Sensitivity. Journal of the American Ceramic Society, 2003, 86, 1638-1640.	1.9	36
106	Sol-Gel Synthesis of λ-Na2O·xAl2O3Films. Journal of the American Ceramic Society, 2003, 86, 1965-1968.	1.9	1
107	Infrared reflectance spectra of semi-transparent SiO2 rich films on silicate glasses: influence of the substrate and film thickness. Journal of Non-Crystalline Solids, 2003, 321, 110-119.	1.5	18
108	SOL-GEL FILMS DOPED WITH SEMICONDUCTOR NANOCRYSTALS FOR OPTICAL APPLICATIONS. , 2002, , .		1

#	Article	IF	CITATIONS
109	NMR and XRD study of the influence of the P precursor in sol-gel synthesis of NASICON powders and films. Journal of the European Ceramic Society, 2002, 22, 1995-2000.	2.8	14
110	A Novel Synthesis of Solâ^'Gel Hybrid Materials by a Nonhydrolytic/Hydrolytic Reaction of (3-Glycidoxypropyl)trimethoxysilane with TiCl4. Chemistry of Materials, 2001, 13, 3635-3643.	3.2	56
111	Glass: Sol–Gel Coatings. , 2001, , 3575-3579.		1
112	Electrical and structural characterisation of mesoporous silica thin films as humidity sensors. Sensors and Actuators B: Chemical, 2001, 76, 299-303.	4.0	71
113	Mesoporous silica thin films for alcohol sensors. Journal of the European Ceramic Society, 2001, 21, 1985-1988.	2.8	67
114	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 22, 245-253.	1.1	14
115	Strip-Loaded Sol-Gel Waveguides: Design and Fabrication. Fiber and Integrated Optics, 2001, 20, 29-43.	1.7	20
116	Optical limiting and non linear optical properties of fullerene derivatives embedded in hybrid sol–gel glasses. Carbon, 2000, 38, 1653-1662.	5.4	56
117	Optical Limiting Devices Based on C60 Derivatives in Sol-Gel Hybrid Organic-Inorganic Materials. Journal of Sol-Gel Science and Technology, 2000, 19, 263-266.	1.1	29
118	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 573-576.	1.1	18
119	Sol-Gel Fabrication of Rare-Earth Doped Photonic Components. Journal of Sol-Gel Science and Technology, 2000, 19, 231-236.	1.1	50
120	Materials for Photonic Applications From Sol-Gel*. , 2000, 4, 151-165.		35
121	Nonlinear Optical Properties of Semiconductor-Doped Sol-Gel Waveguides. Fiber and Integrated Optics, 2000, 19, 43-56.	1.7	10
122	3-(Glycidoxypropyl)-trimethoxysilane–TiO2 hybrid organic–inorganic materials for optical limiting. Journal of Non-Crystalline Solids, 2000, 265, 68-74.	1.5	51
123	Molecular and Material Engineering for Optical Limiting with Fullerene Based Sol-Gel Materials. , 2000, , 83-98.		2
124	Poly(organophosphazene)s and the sol-gel technique. Applied Organometallic Chemistry, 1999, 13, 339-351.	1.7	33
125	Synthesis and Optical-Limiting Behavior of Hybrid Inorganic-Organic Materials from the Sol-Gel Processing of Organofullerenes. Chemistry - A European Journal, 1999, 5, 2501-2510.	1.7	52
126	Microstructural and nonlinear optical properties of silica–titania sol-gel film doped with PbS quantum dots. Journal of Applied Physics, 1999, 86, 79-87.	1.1	63

#	Article	IF	Citations
127	Optical limiting of multilayer sol-gel structures containing fullerenes. Synthetic Metals, 1999, 103, 2474-2475.	2.1	10
128	Optical and surface properties of inorganic and hybrid organic–inorganic silica–titania sol–gel planar waveguides. Journal of Non-Crystalline Solids, 1999, 259, 182-190.	1.5	87
129	New Synthetic Route to (3-Glycidoxypropyl)trimethoxysilane-Based Hybrid Organicâ^Inorganic Materials. Chemistry of Materials, 1999, 11, 1672-1679.	3.2	163
130	Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores., 1999, 3803, 18.		5
131	Influence of the Host Matrix on the Microstructure of Sol-Gel Films Doped with CdS and PbS Q-Dots. Journal of Sol-Gel Science and Technology, 1998, 11, 105-116.	1.1	13
132	Preparation and Characterization of HgxCd1-xS and PbxCd1-xS Quantum Dots and Doped Thin Films. Journal of Sol-Gel Science and Technology, 1998, 11, 229-240.	1.1	31
133	Active optical properties of erbium-doped GeO2-based sol-gel planar waveguides. Thin Solid Films, 1998, 326, 99-105.	0.8	36
134	Spinning deposition of silica and silica-titania optical coatings: A round robin test. Journal of Materials Research, 1998, 13, 731-738.	1.2	10
135	Rare-earth-doped sol-gel waveguides: a review. , 1998, , .		13
136	Resonant nonlinear optical properties of PbS nanocrystals under nano- and picosecond pulsed laser excitation. Journal of Optics, 1997, 6, 527-535.	0.5	8
137	Microstructural and optical properties of sol-gel silica-titania waveguides. Journal of Non-Crystalline Solids, 1997, 220, 202-209.	1.5	109
138	Sol-gel materials embedding fullerene derivatives for optical limiting. Synthetic Metals, 1997, 86, 2353-2354.	2.1	28
139	Control of Semiconductor Particle Size in Sol-Gel Thin Films. Journal of Sol-Gel Science and Technology, 1997, 8, 1017-1021.	1.1	10
140	Title is missing!. Journal of Materials Science, 1997, 32, 4415-4420.	1.7	21
141	Sol-gel coatings on metals. Journal of Sol-Gel Science and Technology, 1997, 8, 443-449.	1.1	237
142	Preparation and characterization of fullerences containing sol-gel glass. Journal of Sol-Gel Science and Technology, 1997, 8, 609-613.	1.1	7
143	Control of semiconductor particle size in sol-gel thin films. Journal of Sol-Gel Science and Technology, 1997, 8, 1017-1021.	1.1	33
144	Sol-gel nonlinear materials based on the incorporation of nanosize crystals and fullerene derivatives. , 1997, , .		0

#	Article	IF	Citations
145	Hybrid materials based on the reaction of polyorganophosphazenes and SiO2 precursors. Journal of Materials Research, 1996, 11, 2029-2034.	1.2	14
146	<title>Fullerene derivatives embedded in sol-gel materials for optical limiting</title> ., 1996, 2854, 130.		6
147	Effects of ion irradiations on properties of polyphosphazene-silica composite films. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 294-297.	0.6	3
148	Direct laser writing of ridge optical waveguides in silica-titania glass sol-gel films. Optical Materials, 1996, 5, 119-126.	1.7	39
149	Hybrid materials based on metal oxides and poly(organophosphazenes). Journal of Inorganic and Organometallic Polymers, 1996, 6, 221-236.	1.5	13
150	Sol - gel glasses for nonlinear optics. Journal of Optics, 1996, 5, 655-666.	0.5	12
151	Optical Limiting of Fullerene Derivatives Embedded in Sol-Gel Materials. , 1996, , 159-174.		8
152	Effects of ion irradiations on properties of polyphosphazene–silica composite films. , 1996, , 294-297.		0
153	C60 derivatives embedded in sol-gel silica films. Advanced Materials, 1995, 7, 404-406.	11.1	86
154	Poly(organophosphazenes) containing azo dyes. Macromolecular Rapid Communications, 1995, 16, 211-217.	2.0	12
155	Effect of preparation of sol-gel coatings on the strength of optical fibres. Journal of Sol-Gel Science and Technology, 1995, 5, 193-199.	1.1	16
156	Borosilicate coatings on mild steel prepared from aqueous amine solutions: A comparison with the alkoxide routes. Journal of the European Ceramic Society, 1995, 15, 337-342.	2.8	16
157	The sol-gel method for the synthesis of glasses, ceramics and hybrid materials. Radiation Effects and Defects in Solids, 1995, 134, 31-37.	0.4	1
158	New materials based on the reaction of cyclo- and poly-(organo phosphazenes) with SiO2, TiO2 and ZrO2 precursors. Journal of Sol-Gel Science and Technology, 1994, 2, 109-114.	1.1	20
159	Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane. Journal of Sol-Gel Science and Technology, 1994, 3, 47-55.	1.1	156
160	Embedding Fullerenes in Thin Sol-Gel Films. Materials Research Society Symposia Proceedings, 1994, 359, 351.	0.1	1
161	CdS- and PbS-doped silica-titania optical waveguides. , 1994, 2288, 174.		15
162	Laser writing of optical waveguides in sol-gel films. , 1994, 2213, 58.		3

#	Article	IF	CITATIONS
163	Compositional and Microstructural Characterization of RuO2 â€â€‰TiO2 Catalysts Synthesized by the Solâ€Gel Method. Journal of the Electrochemical Society, 1992, 139, 1655-1661.	1.3	76
164	Nitridation of SiO2TiO2 sol-gel coatings by ammonolysis and ion implantation. Journal of Non-Crystalline Solids, 1992, 147-148, 451-456.	1.5	5
165	Borosilicate coatings on mild steel. Journal of Non-Crystalline Solids, 1992, 147-148, 474-477.	1.5	43
166	Characterization of laser-densified sol-gel films for the fabrication of planar and strip optical waveguides. Journal of Non-Crystalline Solids, 1992, 147-148, 641-645.	1.5	53
167	SiO2TiO2 sol-gel coatings: a surface study by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 1992, 139, 198-204.	1.5	34
168	Characterization of TiO2 and ZrO2 coatings on silica slabs and fibres. Journal of Materials Science, 1992, 27, 2549-2555.	1.7	21
169	Dependence of thickness on the withdrawal speed for SiO2 and TiO2 coatings obtained by the dipping method. Journal of Materials Science, 1992, 27, 5052-5056.	1.7	27
170	Coating of metals by the sol-gel dip-coating method. Journal of the European Ceramic Society, 1992, 10, 431-436.	2.8	71
171	<title>Planar and strip optical waveguides by sol-gel method and laser densification</title> ., 1991, 1513, 44.		14
172	Thermal evolution of Fe2O3-TiO2 sol-gel thin films. Journal of the European Ceramic Society, 1991, 8, 383-388.	2.8	4
173	Alkaline ion sensitivity of insulator-silicon structures with glass membranes prepared by the sol-gel technique. Journal of Materials Science Letters, 1991, 10, 1129-1131.	0.5	0
174	Mössbauer structural investigation of Fe2O3â^'TiO2 gels. Hyperfine Interactions, 1990, 56, 1717-1721.	0.2	3
175	The thickness of sol-gel silica coatings obtained by dipping. Journal of Non-Crystalline Solids, 1990, 121, 303-309.	1.5	74
176	Influence of the ratio on the preparation of SiO2 thin coatings by the sol-gel dipping method. Materials Chemistry and Physics, 1989, 23, 453-463.	2.0	3
177	Thin Coatings By The Sol-Gel Method. , 1989, , .		0
178	Raman spectra of SiO2 gel glasses prepared from alkoxide, colloidal and amine silicate solutions. Journal of Raman Spectroscopy, 1988, 19, 297-300.	1.2	20
179	Preparation and properties of silica and silicate gels by the alkoxide, colloidal and amine-silicate methods. Ceramics International, 1988, 14, 153-161.	2.3	2
180	Precursors for sol-gel preparations. Journal of Non-Crystalline Solids, 1988, 100, 16-30.	1.5	190

#	Article	IF	CITATIONS
181	SiO2 gel-glasses prepared from alkoxide, colloidal and amine-silicate solutions, a comparison. Journal of Non-Crystalline Solids, 1988, 100, 292-297.	1.5	4
182	Influence of sol-gel coatings on crack initiation by vickers indentation in soda-lime glass. Journal of Non-Crystalline Solids, 1988, 100, 440-446.	1.5	12
183	Influence of the dipping coating procedure on the mechanical strength of soda-lime glass rods. Journal of Non-Crystalline Solids, 1988, 100, 461-465.	1.5	9
184	lon exchange in glasses: A systematic study using nuclear techniques. Journal of Non-Crystalline Solids, 1987, 95-96, 1079-1086.	1.5	6
185	Chemical evolution of the gel: A 31P NMR investigation. Journal of Non-Crystalline Solids, 1986, 82, 110-116.	1.5	4
186	Raman defect peaks in the spectra of Na2O silica gels evolving toward glass. Journal of Non-Crystalline Solids, 1986, 82, 127-136.	1.5	27
187	Interactions with Portland cement paste of glass fibres coated by the sol-gel method. Journal of Non-Crystalline Solids, 1986, 82, 356-365.	1.5	17
188	Coating of glass fibres for cement composites by the sol-gel method. Journal of Materials Science Letters, 1985, 4, 123-124.	0.5	11
189	Structural investigations of TiO2î—,SiO2 glassy and glass-ceramic materials prepared by the sol-gel method. Journal of Non-Crystalline Solids, 1985, 74, 129-146.	1.5	79
190	Mechanical properties of ion implanted glasses. Nuclear Instruments & Methods in Physics Research B, 1984, 1, 253-257.	0.6	14
191	Further investigations on Raman spectra of silica gel evolving toward glass. Journal of Non-Crystalline Solids, 1984, 63, 71-80.	1.5	99
192	Preparation and characterization of Fe, Cr and Co oxide films on flat glass from gels. Journal of Non-Crystalline Solids, 1984, 63, 251-259.	1.5	34
193	Raman and infrared spectra on silica gel evolving toward glass. Journal of Non-Crystalline Solids, 1982, 48, 117-128.	1.5	590
194	AZCS refractories prepared from gels. Journal of Non-Crystalline Solids, 1981, 43, 105-114.	1.5	21