Takuya Matsuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6238272/publications.pdf

Version: 2024-02-01

840776 940533 15 481 11 16 citations h-index g-index papers 17 17 17 591 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A systematic forward genetic analysis identified components of the <i>Chlamydomonas</i> circadian system. Genes and Development, 2008, 22, 918-930.	5.9	110
2	Real-Time Monitoring of Chloroplast Gene Expression by a Luciferase Reporter: Evidence for Nuclear Regulation of Chloroplast Circadian Period. Molecular and Cellular Biology, 2006, 26, 863-870.	2.3	66
3	Nitrogen starvationâ€induced accumulation of triacylglycerol in the green algae: evidence for a role for <scp>ROC</scp> 40, a transcription factor involved in circadian rhythm. Plant Journal, 2016, 85, 743-757.	5.7	49
4	<i>Chlamydomonas reinhardtii</i> as a new model system for studying the molecular basis of the circadian clock. FEBS Letters, 2011, 585, 1495-1502.	2.8	47
5	The CONSTANS flowering complex controls the protective response of photosynthesis in the green alga Chlamydomonas. Nature Communications, 2019, 10, 4099.	12.8	41
6	Phase-resetting mechanism of the circadian clock in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13666-13671.	7.1	39
7	New Insights into the Circadian Clock in Chlamydomonas. International Review of Cell and Molecular Biology, 2010, 280, 281-314.	3.2	29
8	Diversity of plant circadian clocks: Insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens. Plant Signaling and Behavior, 2016, 11, e1116661.	2.4	23
9	Isolation of photoprotective signal transduction mutants by systematic bioluminescence screening in Chlamydomonas reinhardtii. Scientific Reports, 2019, 9, 2820.	3.3	17
10	Methylation deficiency disrupts biological rhythms from bacteria to humans. Communications Biology, 2020, 3, 211.	4.4	17
11	CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas. PLoS Genetics, 2017, 13, e1006645.	3.5	12
12	High-Throughput Phenotyping of Chlamydomonas Swimming Mutants Based on Nanoscale Video Analysis. Biophysical Journal, 2014, 107, 336-345.	0.5	10
13	N-terminal acetyltransferase 3 gene is essential for robust circadian rhythm of bioluminescence reporter in Chlamydomonas reinhardtii. Biochemical and Biophysical Research Communications, 2012, 418, 342-346.	2.1	9
14	The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii. PLoS Genetics, 2020, 16, e1008814.	3.5	8
15	ROC75 is an Attenuator for the Circadian Clock that Controls LHCSR3 Expression. Plant and Cell Physiology, 2018, 59, 2602-2607.	3.1	3