
Yuji Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6238119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant Journal, 2011, 68, 966-976.	5.7	211
2	Os- <i>GIGANTEA</i> Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field Â Â. Plant Cell, 2011, 23, 1741-1755.	6.6	184
3	RNA isolation from siliques, dry seeds, and other tissues of <i>Arabidopsis thaliana</i> . BioTechniques, 2004, 37, 542-544.	1.8	145
4	Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome <i>b</i> ₆ / <i>f</i> complex. Plant, Cell and Environment, 2016, 39, 80-87.	5.7	125
5	Increased Rubisco Content in Transgenic Rice Transformed with the â€~Sense' rbcS Gene. Plant and Cell Physiology, 2007, 48, 626-637.	3.1	119
6	Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field. Nature Food, 2020, 1, 134-139.	14.0	107
7	RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Journal of Experimental Botany, 2012, 63, 2159-2170.	4.8	98
8	Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of <i>RBCS</i> . Plant, Cell and Environment, 2009, 32, 417-427.	5.7	92
9	Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO ₂ Assimilation in Rice. Plant Physiology, 2018, 176, 1509-1518.	4.8	91
10	New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves. Environmental and Experimental Botany, 2011, 71, 128-136.	4.2	76
11	Responses of the Photosynthetic Electron Transport Reactions Stimulate the Oxidation of the Reaction Center Chlorophyll of Photosystem I, P700, under Drought and High Temperatures in Rice. International Journal of Molecular Sciences, 2019, 20, 2068.	4.1	63
12	Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. Plant, Cell and Environment, 2021, 44, 2308-2320.	5.7	63
13	Availability of Rubisco Small Subunit Up-Regulates the Transcript Levels of Large Subunit for Stoichiometric Assembly of Its Holoenzyme in Rice. Plant Physiology, 2012, 160, 533-540.	4.8	55
14	Changes in the Synthesis of Rubisco in Rice Leaves in Relation to Senescence and N Influx. Annals of Botany, 2008, 101, 135-144.	2.9	54
15	Effect of individual suppression of <i>RBCS</i> multigene family on Rubisco contents in rice leaves. Plant, Cell and Environment, 2012, 35, 546-553.	5.7	52
16	Differences in Expression of the RBCS Multigene Family and Rubisco Protein Content in Various Rice Plant Tissues at Different Growth Stages. Plant and Cell Physiology, 2009, 50, 1851-1855.	3.1	51
17	Metabolome analysis of photosynthesis and the related primary metabolites in the leaves of transgenic rice plants with increased or decreased Rubisco content. Plant, Cell and Environment, 2012, 35, 1369-1379.	5.7	50
18	Effects of co-overexpression of the genes of Rubisco and transketolase on photosynthesis in rice. Photosynthesis Research, 2017, 131, 281-289.	2.9	43

Yuji Suzuki

#	Article	IF	CITATIONS
19	A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2. Plant and Cell Physiology, 2017, 58, 635-642.	3.1	41
20	Effects of nitrogen nutrition on the relationships between the levels of rbcS and rbcL mRNAs and the amount of ribulose 1.5-bisphosphate carboxylase/oxygenase synthesized in the eighth leaves of rice from emergence through senescence. Plant, Cell and Environment, 2005, 28, 1589-1600.	5.7	37
21	Differences in Rubisco content and its synthesis in leaves at different positions in <i>Eucalyptus globulus</i> seedlings. Plant, Cell and Environment, 2010, 33, 1314-1323.	5.7	37
22	Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. Journal of Experimental Botany, 2013, 64, 1145-1152.	4.8	34
23	Phosphorus toxicity disrupts Rubisco activation and reactive oxygen species defence systems by phytic acid accumulation in leaves. Plant, Cell and Environment, 2020, 43, 2033-2053.	5.7	32
24	Postâ€illumination transient <scp>O₂</scp> â€uptake is driven by photorespiration in tobacco leaves. Physiologia Plantarum, 2016, 156, 227-238.	5.2	30
25	Whole-Plant Growth and N Utilization in Transgenic Rice Plants with Increased or Decreased Rubisco Content under Different CO2 Partial Pressures. Plant and Cell Physiology, 2014, 55, 1905-1911.	3.1	29
26	Oxidation of P700 Induces Alternative Electron Flow in Photosystem I in Wheat Leaves. Plants, 2019, 8, 152.	3.5	29
27	RNA Extraction from Various Recalcitrant Plant Tissues with a Cethyltrimethylammonium Bromide-Containing Buffer Followed by an Acid Guanidium Thiocyanate-Phenol-Chloroform Treatment. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1951-1953.	1.3	26
28	Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice. Plant Physiology, 2021, 185, 108-119.	4.8	25
29	Effects of Overproduction of Rubisco Activase on Rubisco Content in Transgenic Rice Grown at Different N Levels. International Journal of Molecular Sciences, 2020, 21, 1626.	4.1	24
30	Effects of genetic manipulation of the activity of photorespiration on the redox state of photosystem I and its robustness against excess light stress under CO2-limited conditions in rice. Photosynthesis Research, 2018, 137, 431-441.	2.9	23
31	Differential Expression of Genes of the Calvin–Benson Cycle and its Related Genes During Leaf Development in Rice. Plant and Cell Physiology, 2016, 57, 115-124.	3.1	22
32	Overproduction of Chloroplast Glyceraldehyde-3-Phosphate Dehydrogenase Improves Photosynthesis Slightly under Elevated [CO2] Conditions in Rice. Plant and Cell Physiology, 2021, 62, 156-165.	3.1	21
33	Amount of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Protein and levels of mRNAs of <i>rbc</i> S and <i>rbc</i> L in the leaves at different positions in transgenic rice plants with decreased content of Rubisco. Soil Science and Plant Nutrition, 2004, 50, 233-239.	1.9	20
34	Photorespiration Coupled With CO2 Assimilation Protects Photosystem I From Photoinhibition Under Moderate Poly(Ethylene Glycol)-Induced Osmotic Stress in Rice. Frontiers in Plant Science, 2020, 11, 1121.	3.6	19
35	Photorespiration Enhances Acidification of the Thylakoid Lumen, Reduces the Plastoquinone Pool, and Contributes to the Oxidation of P700 at a Lower Partial Pressure of CO2 in Wheat Leaves. Plants, 2020, 9, 319.	3.5	19
36	Relationship between Rubisco activase and Rubisco contents in transgenic rice plants with overproduced or decreased Rubisco content. Soil Science and Plant Nutrition, 2018, 64, 352-359.	1.9	18

Yuji Suzuki

#	Article	IF	CITATIONS
37	Intrinsic Fluctuations in Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I. Plants, 2020, 9, 1761.	3.5	15
38	P700 oxidation suppresses the production of reactive oxygen species in photosystem I. Advances in Botanical Research, 2020, 96, 151-176.	1.1	15
39	Effects of co-overproduction of sedoheptulose-1,7-bisphosphatase and Rubisco on photosynthesis in rice. Soil Science and Plant Nutrition, 2019, 65, 36-40.	1.9	13
40	Photochemistry of Photosystems II and I in Rice Plants Grown under Different N Levels at Normal and High Temperature. Plant and Cell Physiology, 2021, 62, 1121-1130.	3.1	13
41	Suppression of chloroplast triose phosphate isomerase evokes inorganic phosphate-limited photosynthesis in rice. Plant Physiology, 2022, 188, 1550-1562.	4.8	13
42	O2-enhanced induction of photosynthesis in rice leaves: the Mehler-ascorbate peroxidase (MAP) pathway drives cyclic electron flow within PSII and cyclic electron flow around PSI. Soil Science and Plant Nutrition, 2012, 58, 718-727.	1.9	8
43	Effects of co-overproduction of Rubisco and chloroplast glyceraldehyde-3-phosphate dehydrogenase on photosynthesis in rice. Soil Science and Plant Nutrition, 2021, 67, 283-287.	1.9	8
44	Oxidation of the reaction center chlorophyll of photosystem I is induced via close cooperation of photosystems II and I with progress of drought stress in soybean seedlings. Soil Science and Plant Nutrition, 2021, 67, 662-669.	1.9	8
45	Expression of flavodiiron protein rescues defects in electron transport around PSI resulting from overproduction of Rubisco activase in rice. Journal of Experimental Botany, 2022, 73, 2589-2600.	4.8	7
46	Oxygen response of leaf CO2 compensation points used to determine Rubisco specificity factors of gymnosperm species. Journal of Plant Research, 2020, 133, 205-215.	2.4	6
47	The <i>gs3</i> allele from a largeâ€grain rice cultivar, Akita 63, increases yield and improves nitrogenâ€use efficiency. Plant Direct, 2022, 6, .	1.9	6
48	Cyclic electron flow around PSI functions in the photoinhibited rice leaves. Soil Science and Plant Nutrition, 2011, 57, 105-113.	1.9	4
49	Effects of suppression of chloroplast phosphoglycerate kinase on photosynthesis in rice. Photosynthesis Research, 2022, 153, 83-91.	2.9	4
50	Effects of overexpression of the Rubisco small subunit gene under the control of the Rubisco activase promoter on Rubisco contents of rice leaves at different positions. Soil Science and Plant Nutrition, 2020, 66, 569-578.	1.9	2
51	Editorial: O2 and ROS Metabolisms in Photosynthetic Organisms. Frontiers in Plant Science, 2020, 11, 618550.	3.6	0