Armelle Decaulne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6238077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology, 2006, 80, 80-93.	2.6	64
2	Impacts of postâ€glacial rebound on landslide spatial distribution at a regional scale in northern Iceland (Skagafjörður). Earth Surface Processes and Landforms, 2014, 39, 336-350.	2.5	54
3	Debris flow triggered by rapid snowmelt: a case study in the glei .arhjalli area, northwestern iceland. Geografiska Annaler, Series A: Physical Geography, 2005, 87, 487-500.	1.5	49
4	The Höfðahólar rock avalanche (sturzström): Chronological constraint of paraglacial landsliding on an Icelandic hillslope. Holocene, 2013, 23, 432-446.	1.7	45
5	Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland. Progress in Physical Geography, 2014, 38, 354-377.	3.2	41
6	Gravitational spreading of mountain ridges coeval with Late Weichselian deglaciation: impact on glacial landscapes in TrA¶llaskagi, northern Iceland. Quaternary Science Reviews, 2015, 107, 197-213.	3.0	36
7	A 100-year extreme snow-avalanche record based on tree-ring research in upper BÃ,dalen, inner Nordfjord, western Norway. Geomorphology, 2014, 218, 3-15.	2.6	35
8	Defining an Adequate Sample of Earlywood Vessels for Retrospective Injury Detection in Diffuse-Porous Species. PLoS ONE, 2012, 7, e38824.	2.5	32
9	A century-long snow avalanche chronology reconstructed from tree-rings in Parâng Mountains (Southern Carpathians, Romania). Quaternary International, 2016, 415, 230-240.	1.5	28
10	Are Icelandic rock-slope failures paraglacial? Age evaluation of seventeen rock-slope failures in the Skagafjörður area, based on geomorphological stacking, radiocarbon dating and tephrochronology. Geomorphology, 2017, 296, 45-58.	2.6	25
11	Dating of snow avalanches by means of woundâ€induced vessel anomalies in subâ€arctic <i><scp>B</scp>etula pubescens</i> . Boreas, 2013, 42, 568-574.	2.4	22
12	An early Holocene age for the Vatn landslide (Skagafjörður, central northern Iceland): Insights into the role of postglacial landsliding on slope development. Holocene, 2016, 26, 1304-1318.	1.7	22
13	Snow-avalanche and debris-flow hazards in the fjords of north-western Iceland, mitigation and prevention. Natural Hazards, 2007, 41, 81-98.	3.4	20
14	Distribution and frequency of snowâ€avalanche debris transfer in the distal part of colluvial cones in central north iceland. Geografiska Annaler, Series A: Physical Geography, 2010, 92, 177-187.	1.5	18
15	Meteorological conditions during slushâ€flow release and their geomorphological impact in northwestern iceland: a case study from the bÃłdudalur valley. Geografiska Annaler, Series A: Physical Geography, 2006, 88, 187-197.	1.5	17
16	Changes in deposition on a colluvial fan during the upper holocene in the tindastóll mountain, skagafjörður district, north iceland: preliminary results. Geografiska Annaler, Series A: Physical Geography, 2007, 89, 51-63.	1.5	15
17	Sedimentological and dendrochronological indicators of coastal storm risk in western France. Ecological Indicators, 2018, 90, 401-415.	6.3	12
18	Talus slope characterization in Tasiapik Valley (subarctic Québec): Evidence of past and present slope processes. Geomorphology, 2020, 349, 106911.	2.6	11

ARMELLE DECAULNE

#	Article	IF	CITATIONS
19	Sedimentary fluxes and budgets in changing cold environments: the global iag/aig sediment budgets in cold environments (sedibud) programme. Geografiska Annaler, Series A: Physical Geography, 2010, 92, 151-153.	1.5	8
20	Denudation rates during a postglacial sequence in Northern Iceland: example of Laxárdalur valley in the Skagafjörður area. Geografiska Annaler, Series A: Physical Geography, 2017, 99, 240-261.	1.5	7
21	A multi-scale resolution of snow-avalanche activity based on geomorphological investigations at Fnjóskadalur, northern Iceland. Polar Record, 2013, 49, 220-229.	0.8	4
22	Geomorphic evidence of Holocene slope dynamics on the Canadian shield – a study from Lac Ã l'Eau-Claire, western Nunavik. Ecoscience, 2018, 25, 343-357.	1.4	4
23	Development of a subarctic peatland linked to slope dynamics at Lac Wiyâshâkimî (Nunavik, Canada). Holocene, 2019, 29, 1459-1467.	1.7	3
24	OHMi-Nunavik: a multi-thematic and cross-cultural research program studying the cumulative effects of climate and socio-economic changes on Inuit communities. Ecoscience, 2018, 25, 311-324.	1.4	2
25	Sediment Budgets In Cold Environments—The Sedibud Program. Introduction. Arctic, Antarctic, and Alpine Research, 2009, 41, 1-2.	1.1	2
26	Research resource reviews: Bridge, J.S. and Demicco, R.V. 2008: Earth surface processes, landforms and sediment deposits. Cambridge: Cambridge University Press. 830 pp. £45 cloth. ISBN: 978 0 5218 5780 2. Progress in Physical Geography, 2009, 33, 443-445.	3.2	0
27	Dating saltmarshes using tree rings on a halophilous plant. Wetlands Ecology and Management, 2020, 28, 815-823.	1.5	0
28	An Overview of Postglacial Sediment Records from Colluvial Accumulations in Northwestern and North Iceland. Arctic, Antarctic, and Alpine Research, 2009, 41, 37-47.	1.1	0