List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6237508/publications.pdf Version: 2024-02-01

KEVIN A LANES

#	Article	IF	CITATIONS
1	Distinct MUNC IncRNA structural domains regulate transcription of different promyogenic factors. Cell Reports, 2022, 38, 110361.	2.9	13
2	A cell-nonautonomous mechanism of yeast chronological aging regulated by caloric restriction and one-carbon metabolism. Journal of Biological Chemistry, 2021, 296, 100125.	1.6	17
3	Premalignant Oligodendrocyte Precursor Cells Stall in a Heterogeneous State of Replication Stress Prior to Gliomagenesis. Cancer Research, 2021, 81, 1868-1882.	0.4	11
4	Fragmentation of Small-Cell Lung Cancer Regulatory States in Heterotypic Microenvironments. Cancer Research, 2021, 81, 1853-1867.	0.4	9
5	Pan-Cancer Drivers Are Recurrent Transcriptional Regulatory Heterogeneities in Early-Stage Luminal Breast Cancer. Cancer Research, 2021, 81, 1840-1852.	0.4	10
6	Modeling the complete kinetics of coxsackievirus B3 reveals human determinants of host-cell feedback. Cell Systems, 2021, 12, 304-323.e13.	2.9	12
7	Ten simple rules for being a faculty advocate of first-year graduate students. PLoS Computational Biology, 2021, 17, e1009379.	1.5	0
8	Simulating coxsackievirus B3 infection with an accessible computational model of its complete kinetics. STAR Protocols, 2021, 2, 100940.	0.5	1
9	The receptor tyrosine kinase Ror is required for dendrite regeneration in Drosophila neurons. PLoS Biology, 2020, 18, e3000657.	2.6	24
10	Astrocytic trans-Differentiation Completes a Multicellular Paracrine Feedback Loop Required for Medulloblastoma Tumor Growth. Cell, 2020, 180, 502-520.e19.	13.5	99
11	Fragile epitopes—Antibody's guess is as good as yours. Science Signaling, 2020, 13, .	1.6	11
12	Sporadic activation of an oxidative stress–dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies. Science Signaling, 2020, 13, .	1.6	25
13	CIRCOAST: a statistical hypothesis test for cellular colocalization with network structures. Bioinformatics, 2019, 35, 506-514.	1.8	4
14	In situ 10-cell RNA sequencing in tissue and tumor biopsy samples. Scientific Reports, 2019, 9, 4836.	1.6	23
15	Robust latent-variable interpretation of in vivo regression models by nested resampling. Scientific Reports, 2019, 9, 19671.	1.6	3
16	An ultrasensitive fiveplex activity assay for cellular kinases. Scientific Reports, 2019, 9, 19409.	1.6	3
17	Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Scientific Reports, 2018, 8, 5319.	1.6	92
18	Profiling Subcellular Protein Phosphatase Responses to Coxsackievirus B3 Infection of Cardiomyocytes. Molecular and Cellular Proteomics, 2017, 16, S244-S262.	2.5	13

#	Article	IF	CITATIONS
19	An engineering design approach to systems biology. Integrative Biology (United Kingdom), 2017, 9, 574-583.	0.6	22
20	Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Developmental Cell, 2017, 43, 418-435.e13.	3.1	62
21	Computational Models of Reactive Oxygen Species as Metabolic Byproducts and Signal-Transduction Modulators. Frontiers in Pharmacology, 2016, 7, 457.	1.6	34
22	Single-cell states versus single-cell atlases — two classes of heterogeneity that differ in meaning and method. Current Opinion in Biotechnology, 2016, 39, 120-125.	3.3	23
23	Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting. Cell Systems, 2016, 2, 112-121.	2.9	21
24	TNF-insulin crosstalk at the transcription factor GATA6 is revealed by a model that links signaling and transcriptomic data tensors. Science Signaling, 2016, 9, ra59.	1.6	25
25	Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers. EBioMedicine, 2016, 8, 117-131.	2.7	84
26	<i>Science Signaling</i> Podcast for 7 June 2016: Modeling signal integration. Science Signaling, 2016, 9, pc13.	1.6	0
27	Cell-to-Cell Transcript Variability: Seeing Signal in the Noise. Cell, 2015, 163, 1566-1568.	13.5	7
28	An analysis of critical factors for quantitative immunoblotting. Science Signaling, 2015, 8, rs2.	1.6	167
29	Non-genetic heterogeneity caused by differential single-cell adhesion. Cell Cycle, 2014, 13, 2149-2150.	1.3	3
30	A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies. Nature Cell Biology, 2014, 16, 345-356.	4.6	70
31	Parameterizing cell-to-cell regulatory heterogeneities via stochastic transcriptional profiles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E626-35.	3.3	37
32	An ERK-p38 Subnetwork Coordinates Host Cell Apoptosis and Necrosis during Coxsackievirus B3 Infection. Cell Host and Microbe, 2013, 13, 67-76.	5.1	39
33	Stochastic profiling of transcriptional regulatory heterogeneities in tissues, tumors and cultured cells. Nature Protocols, 2013, 8, 282-301.	5.5	32
34	Simultaneous Profiling of 194 Distinct Receptor Transcripts in Human Cells. Science Signaling, 2013, 6, rs13.	1.6	30
35	A High-throughput Assay for Phosphoprotein-specific Phosphatase Activity in Cellular Extracts. Molecular and Cellular Proteomics, 2013, 12, 797-806.	2.5	22
36	Models of signalling networks – what cell biologists can gain from them and give to them. Journal of Cell Science, 2013, 126, 1913-1921.	1.2	78

#	Article	IF	CITATIONS
37	Modeling the latent dimensions of multivariate signaling datasets. Physical Biology, 2012, 9, 045004.	0.8	16
38	Multiscale Models of Cell Signaling. Annals of Biomedical Engineering, 2012, 40, 2319-2327.	1.3	16
39	Normal morphogenesis of epithelial tissues and progression of epithelial tumors. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 51-78.	6.6	42
40	Systems-Engineering Principles in SignalÂTransduction and Cell-Fate Choice. , 2012, , 1-14.		0
41	RUNX1 and its understudied role in breast cancer. Cell Cycle, 2011, 10, 3461-3465.	1.3	62
42	Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E803-12.	3.3	108
43	Paring down signaling complexity. Nature Biotechnology, 2010, 28, 681-682.	9.4	8
44	Identifying single-cell molecular programs by stochastic profiling. Nature Methods, 2010, 7, 311-317.	9.0	112
45	Pairwise network mechanisms in the host signaling response to coxsackievirus B3 infection. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17053-17058.	3.3	42
46	Cytokine-Induced Signaling Networks Prioritize Dynamic Range over Signal Strength. Cell, 2008, 135, 343-354.	13.5	96
47	When microarrays Met epidermalâ€cell migration. Molecular Systems Biology, 2008, 4, 200.	3.2	0
48	Common effector processing mediates cell-specific responses to stimuli. Nature, 2007, 448, 604-608.	13.7	183
49	The Response of Human Epithelial Cells to TNF Involves an Inducible Autocrine Cascade. Cell, 2006, 124, 1225-1239.	13.5	188
50	Data-driven modelling of signal-transduction networks. Nature Reviews Molecular Cell Biology, 2006, 7, 820-828.	16.1	347
51	A biological approach to computational models of proteomic networks. Current Opinion in Chemical Biology, 2006, 10, 73-80.	2.8	111
52	Applying computational modeling to drug discovery and development. Drug Discovery Today, 2006, 11, 806-811.	3.2	115
53	Adenoviral vector saturates Akt pro-survival signaling and blocks insulin-mediated rescue of tumor-necrosis-factor-induced apoptosis. Journal of Cell Science, 2006, 119, 3788-3798.	1.2	21
54	A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis. Science, 2005, 310, 1646-1653.	6.0	506

#	Article	IF	CITATIONS
55	A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nature Methods, 2005, 2, 277-284.	9.0	202
56	A Compendium of Signals and Responses Triggered by Prodeath and Prosurvival Cytokines. Molecular and Cellular Proteomics, 2005, 4, 1569-1590.	2.5	134
57	Cue-Signal-Response Analysis of TNF-Induced Apoptosis by Partial Least Squares Regression of Dynamic Multivariate Data. Journal of Computational Biology, 2004, 11, 544-561.	0.8	106
58	Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 123-131.	2.0	408
59	A High-throughput Quantitative Multiplex Kinase Assay for Monitoring Information Flow in Signaling Networks. Molecular and Cellular Proteomics, 2003, 2, 463-473.	2.5	89
60	Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Controlled Release, 2001, 70, 399-421.	4.8	1,140
61	Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release, 2001, 73, 255-267.	4.8	639