Dieter H Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6237252/publications.pdf

Version: 2024-02-01

172457 85541 5,166 132 29 71 citations h-index g-index papers 132 132 132 6069 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How Massive Single Stars End Their Life. Astrophysical Journal, 2003, 591, 288-300.	4.5	1,584
2	<i>Swift</i> and <i>NuSTAR</i> observations of GW170817: Detection of a blue kilonova. Science, 2017, 358, 1565-1570.	12.6	399
3	Formation Rates of Black Hole Accretion Disk Gammaâ€Ray Bursts. Astrophysical Journal, 1999, 526, 152-177.	4.5	386
4	Implications of cosmological gamma-ray absorption. Astronomy and Astrophysics, 2004, 413, 807-815.	5.1	295
5	2FHL: THE SECOND CATALOG OF HARD FERMI-LAT SOURCES. Astrophysical Journal, Supplement Series, 2016, 222, 5.	7.7	219
6	THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND AND IMPLICATIONS FOR DARK MATTER ANNIHILATION. Astrophysical Journal Letters, 2015, 800, L27.	8.3	179
7	The e-ASTROGAM mission. Experimental Astronomy, 2017, 44, 25-82.	3.7	167
8	WEIBEL INSTABILITY AND ASSOCIATED STRONG FIELDS IN A FULLY THREE-DIMENSIONAL SIMULATION OF A RELATIVISTIC SHOCK. Astrophysical Journal, 2009, 698, L10-L13.	4.5	92
9	Signatures of a jet cocoon in early spectra of a supernova associated with a \hat{I}^3 -ray burst. Nature, 2019, 565, 324-327.	27.8	88
10	Dense matter with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	81
11	BL Lacertae objects beyond redshift 1.3 – UV-to-NIR photometry and photometric redshift for <i>Fermi</i> /i>/LAT blazars. Astronomy and Astrophysics, 2012, 538, A26.	5 . 1	69
12	MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT. Astronomical Journal, 2011, 141, 36.	4.7	61
13	A New Measurement of the Hubble Constant and Matter Content of the Universe Using Extragalactic Background Light \hat{l}^3 -Ray Attenuation. Astrophysical Journal, 2019, 885, 137.	4.5	60
14	General Physical Properties of CGRaBS Blazars. Astrophysical Journal, 2017, 851, 33.	4.5	56
15	X-ray monitoring of classical novae in the central region of M 31 III. Autumn and winter 2009/10, 2010/11, and 2011/12. Astronomy and Astrophysics, 2014, 563, A2.	5.1	53
16	The Diffuse Gammaâ€Ray Background from Supernovae. Astrophysical Journal, 1999, 516, 285-296.	4.5	51
17	M31N 2008-12a—THE REMARKABLE RECURRENT NOVA IN M31: PANCHROMATIC OBSERVATIONS OF THE 201 ERUPTION. Astrophysical Journal, 2016, 833, 149.	.5 4 . 5	50
18	ALMA and GMRT Constraints on the Off-axis Gamma-Ray Burst 170817A from the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L21.	8.3	49

#	Article	IF	CITATIONS
19	The Central Engines of Fermi Blazars. Astrophysical Journal, Supplement Series, 2021, 253, 46.	7.7	46
20	A GeV–TeV Measurement of the Extragalactic Background Light. Astrophysical Journal Letters, 2019, 874, L7.	8.3	44
21	General Physical Properties of Gamma-Ray-emitting Narrow-line Seyfert 1 Galaxies. Astrophysical Journal, 2019, 872, 169.	4.5	44
22	X-ray monitoring of classical novae in the central region of MÂ31. Astronomy and Astrophysics, 2011, 533, A52.	5.1	43
23	Multi-color observations of short GRB afterglows: 20 events observed between 2007 and 2010. Astronomy and Astrophysics, 2012, 548, A101.	5.1	43
24	The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA). Publications of the Astronomical Society of the Pacific, 2017, 129, 015002.	3.1	42
25	X-ray monitoring of classical novae in the central region of MÂ31. Astronomy and Astrophysics, 2010, 523, A89.	5.1	37
26	<i>SWIFT</i> ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST. Astrophysical Journal, 2015, 805, 74.	4.5	37
27	EVOLUTION OF GLOBAL RELATIVISTIC JETS: COLLIMATIONS AND EXPANSION WITH kKHI AND THE WEIBEL INSTABILITY. Astrophysical Journal, 2016, 820, 94.	4.5	36
28	ON THE ORIGIN OF THE HIGHEST REDSHIFT GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 708, 117-126.	4.5	35
29	<i>Swift</i> -XRT follow-up of gravitational wave triggers during the third aLIGO/Virgo observing run. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3459-3480.	4.4	31
30	BAT AGN Spectroscopic Survey. XVI. General Physical Characteristics of BAT Blazars. Astrophysical Journal, 2019, 881, 154.	4.5	27
31	MAGNETIC FIELD GENERATION IN CORE-SHEATH JETS VIA THE KINETIC KELVIN-HELMHOLTZ INSTABILITY. Astrophysical Journal, 2014, 793, 60.	4.5	25
32	Breaking the Habit: The Peculiar 2016 Eruption of the Unique Recurrent Nova M31N 2008-12a. Astrophysical Journal, 2018, 857, 68.	4.5	24
33	A UNIFIED MODEL FOR GRB PROMPT EMISSION FROM OPTICAL TO γ-RAYS; EXPLORING GRBs AS STANDARD CANDLES. Astrophysical Journal Letters, 2016, 831, L8.	8.3	23
34	Leptonic and Hadronic Modeling of Fermi-LAT Hard Spectrum Quasars and Predictions for High-energy Polarization. Astrophysical Journal, 2018, 863, 98.	4.5	23
35	Deep ATCA and VLA Radio Observations of Short-GRB Host Galaxies. Constraints on Star Formation Rates, Afterglow Flux, and Kilonova Radio Flares. Astrophysical Journal, 2019, 887, 206.	4.5	23
36	<i>SWIFT</i> /BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44. Astrophysical Journal Letters, 2014, 797, L6.	8.3	22

#	Article	IF	CITATIONS
37	Gamma-ray astrophysics in the MeV range. Experimental Astronomy, 2021, 51, 1225-1254.	3.7	22
38	The Cosmic \hat{I}^3 -ray Background from supernovae. , 1997, , .		20
39	Deep Optical Counterpart Searches of Gamma-Ray Burst Localizations. Astrophysical Journal, 1995, 446, 115.	4.5	20
40	Magnetic field generation in a jet-sheath plasma via the kinetic Kelvin-Helmholtz instability. Annales Geophysicae, 2013, 31, 1535-1541.	1.6	19
41	Blazars at the Cosmic Dawn. Astrophysical Journal, 2020, 897, 177.	4.5	19
42	Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813. Astronomical Journal, 2007, 134, 2118-2123.	4.7	18
43	NEW HIGH-z FERMI BL LACS WITH THE PHOTOMETRIC DROPOUT TECHNIQUE. Astrophysical Journal, 2017, 834, 41.	4.5	18
44	New High-z BL Lacs Using the Photometric Method with Swift and SARA. Astrophysical Journal, 2018, 859, 80.	4.5	18
45	THE ORIGIN OF THE COSMIC GAMMA-RAY BACKGROUND IN THE MeV RANGE. Astrophysical Journal, 2016, 820, 142.	4.5	17
46	High-redshift Blazars through NuSTAR Eyes. Astrophysical Journal, 2017, 839, 96.	4.5	16
47	Probing the EBL Evolution at High Redshift Using GRBs Detected with the <i>Fermi </i> LAT. Astrophysical Journal, 2017, 850, 73.	4.5	16
48	The Location and Environments of Neutron Star Mergers in an Evolving Universe. Astrophysical Journal, 2018, 865, 27.	4.5	16
49	The 2175 Ã Extinction Feature in the Optical Afterglow Spectrum of GRB 180325A at zÂ=Â2.25 ^{â^—<td>>. 8.3</td><td>16</td>}	>. 8.3	16
50	Swift-XRT Follow-up of Gravitational-wave Triggers in the Second Advanced LIGO/Virgo Observing Run. Astrophysical Journal, Supplement Series, 2019, 245, 15.	7.7	16
51	Nova M31N 2007-12b: supersoft X-rays reveal an intermediate polar?. Astronomy and Astrophysics, 2011, 531, A22.	5.1	15
52	Fermi-LAT Stacking Analysis Technique: An Application to Extreme Blazars and Prospects for their CTA Detection. Astrophysical Journal Letters, 2019, 882, L3.	8.3	15
53	<i>Swift</i> /UVOT follow-up of gravitational wave alerts in the O3 era. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1296-1317.	4.4	15
54	GRB 171010A/SN 2017htp: a GRB-SN at zÂ=Â0.33. Monthly Notices of the Royal Astronomical Society, 2490, 5366-5374.	2019, 4.4	14

#	Article	IF	CITATIONS
55	POET: POlarimeters for Energetic Transients. , 2008, , .		14
56	Gamma Rays from Fast Black-hole Winds. Astrophysical Journal, 2021, 921, 144.	4.5	14
57	NuSTAR Perspective on High-redshift MeV Blazars. Astrophysical Journal, 2020, 889, 164.	4.5	13
58	Gamma-rays from neutron stars. Astronomy and Astrophysics Review, 1995, 6, 225-270.	25.5	12
59	Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields. Galaxies, 2016, 4, 38.	3.0	12
60	Detection of a Gamma-Ray Flare from the High-redshift Blazar DA 193. Astrophysical Journal, 2019, 871, 211.	4.5	12
61	The First Gamma-Ray Emitting BL Lacertae Object at the Cosmic Dawn. Astrophysical Journal Letters, 2020, 903, L8.	8.3	12
62	Photospheric Emission in the Joint GBM and Konus Prompt Spectra of GRB 120323A. Astrophysical Journal, 2017, 846, 138.	4.5	11
63	Relativistic Jet Simulations of the Weibel Instability in the Slab Model to Cylindrical Jets with Helical Magnetic Fields. Galaxies, 2019, 7, 29.	3.0	11
64	TXS 2116â^'077: A Gamma-Ray Emitting Relativistic Jet Hosted in a Galaxy Merger. Astrophysical Journal, 2020, 892, 133.	4.5	11
65	Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields: Dependence on Jet Radius. Galaxies, 2017, 5, 58.	3.0	10
66	New constraints on the physical conditions in H ₂ -bearing GRB-host damped Lyman- <i>\hat{l}±</i> absorbers. Astronomy and Astrophysics, 2019, 629, A131.	5.1	10
67	Spectropolarimetry and photometry of the early afterglow of the gamma-ray burst GRB 191221B. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4621-4631.	4.4	10
68	RADIATION FROM RELATIVISTIC SHOCKS WITH TURBULENT MAGNETIC FIELDS. International Journal of Modern Physics D, 2010, 19, 715-721.	2.1	9
69	Hunting Distant BL Lacertae Objects with the Photometric Technique Using Swift and SARA. Astrophysical Journal, 2020, 898, 18.	4.5	9
70	The Gamow Explorer: a Gamma-Ray Burst Observatory to study the high redshift universe and enable multi-messenger astrophysics., 2021,,.		9
71	Properties of High-redshift Gamma-Ray Bursts. Astrophysical Journal, 2022, 929, 111.	4.5	9
72	Afterglows from the largest explosions in the universe. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4752-4755.	7.1	8

#	Article	IF	Citations
73	Gamma-rays from massive stars in Cygnus and Orion. Symposium - International Astronomical Union, 2003, 212, 706-709.	0.1	8
74	GRB Polarimetry with POET., 2009, , .		8
75	Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers. Astrophysical Journal, 2021, 907, 97.	4.5	7
76	Probing The Extragalactic Background With GLAST. AIP Conference Proceedings, 2007, , .	0.4	6
77	The Robotic Super-LOTIS Telescope: Results & The Robotic Super-Robotic Su	0.4	6
78	New Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs. , 2008, , .		6
79	SIMULATION OF RELATIVISTIC JETS AND ASSOCIATED SELF-CONSISTENT RADIATION. International Journal of Modern Physics Conference Series, 2012, 08, 259-264.	0.7	6
80	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	3.7	6
81	The Diffuse Supernova Neutrino Background. Research Notes of the AAS, 2020, 4, 4.	0.7	5
82	Identification of an X-Ray Pulsar in the BeXRB System IGR J18219â^'1347. Astrophysical Journal, 2022, 927, 139.	4.5	5
83	The Search for Optical and Near-Infrared Counterparts of GRBs with the Super-LOTIS Telescope. AIP Conference Proceedings, 2004, , .	0.4	4
84	Identifying the host galaxy of the short GRB 100628A. Astronomy and Astrophysics, 2015, 583, A88.	5.1	4
85	Particle-in-cell Simulations of Global Relativistic Jets with Helical Magnetic Fields. Proceedings of the International Astronomical Union, 2016, 12, 199-202.	0.0	4
86	Discovery and Identification of MAXI J1621–501 as a Type I X-Ray Burster with a Super-orbital Period. Astrophysical Journal, 2019, 884, 168.	4.5	4
87	The host galaxy of the short GRB 050709. Astronomy and Astrophysics, 2021, 650, A117.	5.1	4
88	The extragalactic Xâ€ray background due to cosmological supernovae. Astronomische Nachrichten, 1998, 319, 67-67.	1.2	3
89	Gamma rays from cosmic radioactivities. Meteoritics and Planetary Science, 2007, 42, 1145-1157.	1.6	3
90	GAMMA RAY BURSTERS. , 1994, , 69-106.		3

#	Article	IF	Citations
91	Swift/XRT Deep Galactic Plane Survey Discovery of a New Intermediate Polar Cataclysmic Variable, Swift J183920.1-045350. Astrophysical Journal, 2021, 923, 243.	4.5	3
92	Does the 1.8 MeV gamma-ray line emission from 26Al show evidence for a galactic bar?. AIP Conference Proceedings, $1994, \ldots$	0.4	2
93	Are galactic GRB models still an option?. Astrophysics and Space Science, 1995, 231, 361-368.	1.4	2
94	Hard X-ray emission from Cassiopeia A SNR. , 1997, , .		2
95	A supernova connection. Nature Physics, 2010, 6, 241-243.	16.7	2
96	NuSTAR Observations and Multiwavelength Modeling of the High-redshift BL Lacertae Object 4FGL J2146.5-1344. Astrophysical Journal, 2020, 889, 102.	4.5	2
97	Searching for a galactic origin of gamma-ray bursts. AIP Conference Proceedings, 1994, , .	0.4	1
98	The angular correlation function of gamma-ray bursts. AIP Conference Proceedings, 1994, , .	0.4	1
99	Multi-wavelength Flashes from GRBs. International Astronomical Union Colloquium, 1995, 151, 367-375.	0.1	1
100	First year results from LOTIS. , 1998, , .		1
101	The most distant gamma-ray bursts. AIP Conference Proceedings, 2000, , .	0.4	1
102	Search for photometric variability in the vicinity of SGR 1900+14 and discovery of a high-mass cluster. AIP Conference Proceedings, 2000, , .	0.4	1
103	The Polarization Evolution of the Optical Afterglow of GRB 030329. AIP Conference Proceedings, 2004,	0.4	1
104	Extinction Trends in GRB Host Galaxies. , 2009, , .		1
105	Tracing Cosmic Chemical Evolution with GRBs. , 2009, , .		1
106	Simulation of Relativistic Shocks and Associated Self-consistent Radiation. , 2010, , .		1
107	Simulation of Relativistic Shocks and Associated Self-consistent Radiation. AIP Conference Proceedings, $2011,\ldots$	0.4	1
108	Diffuse Galactic gamma-rays from pulsars. AIP Conference Proceedings, 1992, , .	0.4	0

#	Article	lF	CITATIONS
109	On the extended halo origin of gamma-ray bursts. , 1993, , .		O
110	Galactic gamma-ray pulsars. AIP Conference Proceedings, 1994, , .	0.4	0
111	Do Gamma-Ray Bursts Originate from an Extended Galactic Halo of High-Velocity Neutron Stars?. International Astronomical Union Colloquium, 1994, 142, 893-897.	0.1	0
112	Gamma ray burst models and the angular distribution of 3B. AIP Conference Proceedings, 1996, , .	0.4	0
113	The GRB rate at high photon energies. AIP Conference Proceedings, 1996, , .	0.4	0
114	Properties of GRB host galaxies. , 1998, , .		0
115	The USNO deep optical survey of small. , 1998, , .		0
116	Deep imaging of the., 1998,,.		0
117	Rapid, deep GRB observations with the U.S. Naval Observatory 1.3-m wide-field telescope. AIP Conference Proceedings, 2000, , .	0.4	0
118	The Optical Afterglow of GRB 030226. AIP Conference Proceedings, 2004, , .	0.4	0
119	Observing GRBs with EXIST. AIP Conference Proceedings, 2004, , .	0.4	0
120	A Rapid-Response Gamma-Ray Burst Afterglow Observing Program at Etelman Observatory in the US Virgin Islands. AIP Conference Proceedings, 2004, , .	0.4	0
121	Light element synthesis constraining the supernova neutrino spectrum. Proceedings of the International Astronomical Union, 2005, $1,115-118$.	0.0	0
122	The Effect of Neutrino Oscillations on Supernova Light Element Synthesis. AIP Conference Proceedings, 2006, , .	0.4	0
123	Rapid GRB Afterglow Response With SARA. AIP Conference Proceedings, 2006, , .	0.4	0
124	GRB Supernova Luminosities â€" Correcting for the Host Extinction. AIP Conference Proceedings, 2006, , .	0.4	0
125	Probing the Universe with Gamma-Ray Bursts. , 2007, , .		0
126	Probing The Universe With GRBs. AIP Conference Proceedings, 2008, , .	0.4	0

#	Article	IF	CITATIONS
127	Rapid Flaring in GRB 070125. AIP Conference Proceedings, 2008, , .	0.4	0
128	Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration., 2009, , .		0
129	MAGNETOHYDRODYNAMIC EFFECTS IN RELATIVISTIC EJECTA. International Journal of Modern Physics D, 2010, 19, 991-996.	2.1	0
130	Classical Novae as Supersoft X-ray Sources in the Andromeda Galaxy. Proceedings of the International Astronomical Union, 2011, 7, 105-112.	0.0	0
131	PARTICLE ACCELERATION AND MAGNETIC FIELD GENERATION IN SHEAR-FLOWS. International Journal of Modern Physics Conference Series, 2014, 28, 1460195.	0.7	0
132	VLT/MUSE and ATCA Observations of the Host Galaxy of the Short GRB 080905A at $z=0.122$. Astrophysical Journal, 2021, 923, 38.	4.5	0