Koichi Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6237181/publications.pdf

Version: 2024-02-01

109264 95218 5,231 101 35 68 citations h-index g-index papers 111 111 111 6022 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ibrutinib and Venetoclax for First-Line Treatment of CLL. New England Journal of Medicine, 2019, 380, 2095-2103.	13.9	388
2	Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nature Genetics, 2020, 52, 1219-1226.	9.4	367
3	Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncology, The, 2017, 18, 100-111.	5.1	296
4	PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell, 2018, 23, 700-713.e6.	5.2	272
5	Characteristics, clinical outcome, and prognostic significance of <scp>IDH</scp> mutations in <scp>AML</scp> . American Journal of Hematology, 2015, 90, 732-736.	2.0	242
6	Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nature Communications, 2020, 11, 5327.	5.8	208
7	10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial. Lancet Haematology,the, 2020, 7, e724-e736.	2.2	201
8	<i>TP53</i> mutations in newly diagnosed acute myeloid leukemia: Clinicomolecular characteristics, response to therapy, and outcomes. Cancer, 2016, 122, 3484-3491.	2.0	200
9	High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Research, 2018, 28, 1345-1352.	2.4	175
10	Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, 2768-2778.	0.8	173
11	Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. Journal of Clinical Oncology, 2018, 36, 1788-1797.	0.8	156
12	Safety and Efficacy of Blinatumomab in Combination With a Tyrosine Kinase Inhibitor for the Treatment of Relapsed Philadelphia Chromosome-positive Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 897-901.	0.2	127
13	Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Advances, 2020, 4, 1311-1320.	2.5	106
14	Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature, 2017, 542, 362-366.	13.7	105
15	Prognostic and therapeutic impacts of mutant <i>TP53</i> variant allelic frequency in newly diagnosed acute myeloid leukemia. Blood Advances, 2020, 4, 5681-5689.	2.5	105
16	Clinical implications of <i>TP53</i> mutations in myelodysplastic syndromes treated with hypomethylating agents. Oncotarget, 2016, 7, 14172-14187.	0.8	86
17	Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer Journal, 2021, 11, 25.	2.8	85
18	NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Advances, 2019, 3, 922-933.	2.5	84

#	Article	IF	CITATIONS
19	Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Advances, 2017, 1, 1312-1323.	2.5	83
20	Outcomes of <i>TP53</i> â€mutant acute myeloid leukemia with decitabine and venetoclax. Cancer, 2021, 127, 3772-3781.	2.0	80
21	Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes. Nature Communications, 2018, 9, 2670.	5.8	79
22	RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood, 2019, 134, 59-73.	0.6	75
23	A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood, 2018, 132, 1664-1674.	0.6	62
24	Pracinostat plus azacitidine in older patients with newly diagnosed acute myeloid leukemia: results of a phase 2 study. Blood Advances, 2019, 3, 508-518.	2.5	62
25	Leukemia stemness and co-occurring mutations drive resistance to IDH inhibitors in acute myeloid leukemia. Nature Communications, 2021, 12, 2607.	5.8	61
26	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	4.2	56
27	Clinical characteristics and outcomes of therapy-related chronic myelomonocytic leukemia. Blood, 2013, 122, 2807-2811.	0.6	50
28	Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 Inhibitors. Blood Cancer Discovery, 2021, 2, 125-134.	2.6	50
29	Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). Blood Cancer Journal, 2022, 12, 5.	2.8	49
30	Detectable FLT3-ITD or RAS mutation at the time of transformation from MDS to AML predicts for very poor outcomes. Leukemia Research, 2015, 39, 1367-1374.	0.4	48
31	Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer Journal, 2022, 12, 10.	2.8	48
32	Characteristics and outcomes of older patients with secondary acute myeloid leukemia according to treatment approach. Cancer, 2017, 123, 3050-3060.	2.0	47
33	Hematologic malignancies and Li–Fraumeni syndrome. Journal of Physical Education and Sports Management, 2019, 5, a003210.	0.5	45
34	Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy. Nature Communications, 2021, 12, 6071.	5.8	44
35	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	2.2	43
36	Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 2022, 40, 3848-3857.	0.8	41

#	Article	IF	CITATIONS
37	Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide. Blood, 2018, 131, 1820-1832.	0.6	40
38	Phase II Trial of MEK Inhibitor Binimetinib (MEK162) in RAS-mutant Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 142-148.e1.	0.2	39
39	Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Advances, 2021, 5, 2173-2183.	2.5	35
40	Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood, 2022, 139, 907-921.	0.6	34
41	Hypomethylating agent and venetoclax with FLT3 inhibitor "triplet―therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer Journal, 2022, 12, 77.	2.8	33
42	Venetoclax combined with <scp>FLAGâ€IDA</scp> induction and consolidation in newly diagnosed acute myeloid leukemia. American Journal of Hematology, 2022, 97, 1035-1043.	2.0	31
43	Copy number alterations detected as clonal hematopoiesis of indeterminate potential. Blood Advances, 2017, 1, 1031-1036.	2.5	30
44	JAK2 p.V617F detection and allele burden measurement in peripheral blood and bone marrow aspirates in patients with myeloproliferative neoplasms. Blood, 2013, 122, 3784-3786.	0.6	29
45	Clonal Hematopoiesis Is Associated with Increased Risk of Severe Neurotoxicity in Axicabtagene Ciloleucel Therapy of Large B-Cell Lymphoma. Blood Cancer Discovery, 2022, 3, 385-393.	2.6	29
46	Flow cytometric immunophenotypic alterations of persistent clonal haematopoiesis in remission bone marrows of patients with <i>NPM1</i> Àemutated acute myeloid leukaemia. British Journal of Haematology, 2021, 192, 1054-1063.	1.2	28
47	Mechanistic basis and efficacy of targeting the β-catenin–TCF7L2–JMJD6–c-Myc axis to overcome resistance to BET inhibitors. Blood, 2020, 135, 1255-1269.	0.6	27
48	Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy. Nature Medicine, 2022, 28, 557-567.	15.2	26
49	Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematology,the, 2022, 9, e350-e360.	2.2	26
50	Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nature Communications, 2022, 13, 2801.	5.8	25
51	Superior efficacy of co-targeting GFI1/KDM1A and BRD4 against AML and post-MPN secondary AML cells. Blood Cancer Journal, 2021, 11, 98.	2.8	24
52	Bone marrow clonal hematopoiesis is highly prevalent in blastic plasmacytoid dendritic cell neoplasm and frequently sharing a clonal origin in elderly patients. Leukemia, 2022, 36, 1343-1350.	3.3	23
53	Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (iFCG) regimen for chronic lymphocytic leukemia (CLL) with mutated IGHV and without TP53 aberrations. Leukemia, 2021, 35, 3421-3429.	3.3	22
54	Salvage therapy using <scp>FLT</scp> 3 inhibitors may improve longâ€term outcome of relapsed or refractory <scp>AML</scp> in patients with <i><scp>FLT</scp>3</i> â€ <scp>ITD</scp> . British Journal of Haematology, 2013, 161, 659-666.	1.2	20

#	Article	IF	CITATIONS
55	Decitabine and venetoclax for <i><scp>IDH1/2</scp>â€</i> mutated acute myeloid leukemia. American Journal of Hematology, 2021, 96, E154-E157.	2.0	19
56	Donor clonal hematopoiesis increases risk of acute graft versus host disease after matched sibling transplantation. Leukemia, 2022, 36, 257-262.	3.3	19
57	Clofarabine Plus Low-Dose Cytarabine Is as Effective as and Less Toxic Than Intensive Chemotherapy in Elderly AML Patients. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 163-168.e2.	0.2	18
58	Nuclear NAD ⁺ homeostasis governed by NMNAT1 prevents apoptosis of acute myeloid leukemia stem cells. Science Advances, 2021, 7, .	4.7	18
59	PRDM16s transforms megakaryocyte-erythroid progenitors into myeloid leukemia–initiating cells. Blood, 2019, 134, 614-625.	0.6	16
60	Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome–positive acute lymphoblastic leukemia treated with hyper VAD and dasatinib. Cancer, 2021, 127, 2641-2647.	2.0	15
61	T(6;14)(q25;q32) involves BCL11B and is highly associated with mixed-phenotype acute leukemia, T/myeloid. Leukemia, 2020, 34, 2509-2512.	3.3	14
62	Clinical and cytogenetic characteristics of myelodysplastic syndrome in patients with HIV infection. Leukemia Research, 2012, 36, 1376-1379.	0.4	13
63	A multi-arm phase lb/II study designed for rapid, parallel evaluation of novel immunotherapy combinations in relapsed/refractory acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 2161-2170.	0.6	12
64	Combined Ibrutinib and Venetoclax for First-Line Treatment for Patients with Chronic Lymphocytic Leukemia (CLL): Focus on MRD Results. Blood, 2020, 136, 42-43.	0.6	11
65	Phase II Study of Venetoclax Added to Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacytidine Demonstrates High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) and Excellent Tolerability in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). Blood, 2020, 136, 17-19.	0.6	10
66	Azacitidine (AZA) with Nivolumab (Nivo), and AZA with Nivo + Ipilimumab (Ipi) in Relapsed/Refractory (R/R) Acute Myeloid Leukemia: Clinical and Immune Biomarkers of Response. Blood, 2020, 136, 43-45.	0.6	10
67	Chromosome 5q deletion is extremely rare in patients with myelofibrosis. Leukemia Research, 2013, 37, 552-555.	0.4	9
68	Efficacy and predictors of response of lenalidomide and rituximab in patients with treatment-naive and relapsed CLL. Blood Advances, 2019, 3, 1533-1539.	2.5	9
69	Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib. Leukemia, 2022, 36, 1253-1260.	3.3	9
70	Venetoclax, FLT3 Inhibitor and Decitabine in FLT3mut Acute Myeloid Leukemia: Subgroup Analysis of a Phase II Trial. Blood, 2020, 136, 53-55.	0.6	8
71	Phase II Study of CPX-351 Plus Venetoclax in Patients with Acute Myeloid Leukemia (AML). Blood, 2020, 136, 20-22.	0.6	8
72	Acquired WT1 mutations contribute to relapse of NPM1-mutated acute myeloid leukemia following allogeneic hematopoietic stem cell transplant. Bone Marrow Transplantation, 2022, 57, 370-376.	1.3	8

#	Article	IF	Citations
73	Phase II trial of CPX-351 in patients with acute myeloid leukemia at high risk for induction mortality. Leukemia, 2020, 34, 2914-2924.	3.3	7
74	Statistical tests for intra-tumour clonal co-occurrence and exclusivity. PLoS Computational Biology, 2021, 17, e1009036.	1.5	6
75	Germline polymorphisms and the risk of therapy-related myeloid neoplasms. Best Practice and Research in Clinical Haematology, 2019, 32, 24-30.	0.7	5
76	The landscape of genetic mutations in patients with chronic lymphocytic leukaemia and complex karyotype. British Journal of Haematology, 2019, 187, e1-e4.	1.2	4
77	Incidence and Prognostic Impact of Cytogenetic and Molecular Clonal Evolution in Relapsed and Refractory Acute Myeloid Leukemia (AML) Patients: Study of Sequential Cytogenetic and Molecular Mutational Analysis Blood, 2012, 120, 2562-2562.	0.6	4
78	Fidelity of peripheral blood for monitoring genomics and tumor immuneâ€microenvironment in myelodysplastic syndromes. EJHaem, 2020, 1, 552-557.	0.4	3
79	Preclinically Effective Menin Inhibitor SNDX-50469 and SNDX-5613-Based Combinations Against MLL1-Rearranged (MLL-r) or NPM1-Mutant AML Models. Blood, 2021, 138, 3340-3340.	0.6	3
80	Outcomes of <i>De Novo</i> Acute Myeloid Leukemia with Monocytic Differentiation (FAB M4/5) Treated with Venetoclax and Decitabine. Blood, 2020, 136, 11-13.	0.6	3
81	Acute promyelocytic leukemia presented as a relapse of acute myeloid leukemia. American Journal of Hematology, 2016, 91, E274-6.	2.0	2
82	Prognostic Value of Measurable Residual Disease after Venetoclax and Decitabine in Acute Myeloid Leukemia. Blood, 2020, 136, 22-25.	0.6	2
83	A Phase II Expansion Study Of Vorinostat In Combination With Idarubicin and Cytarabine For Patients With Acute Myelogenous Leukemia (AML) With FLT3 Molecular Alterations. Blood, 2013, 122, 2684-2684.	0.6	2
84	Outcomes with Sequential FLT3-Inhibitor (FLT3i) Based Therapies in Patients (pts) with FLT3-Mutated Acute Myeloid Leukemia (AML) Exposed to Prior FLT3i Based Therapies. Blood, 2020, 136, 22-24.	0.6	2
85	Clonal Expansion of Mutant p53 Clones By MDM2 Inhibition in Acute Myeloid Leukemias. Blood, 2020, 136, 27-28.	0.6	2
86	Prognostic Significance of Genetic Alterations in Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia Treated with Hyper-CVAD Plus Dasatinib or Hyper-CVAD Plus Ponatinib. Blood, 2020, 136, 40-41.	0.6	2
87	AML: Predicting the Unpredictable. Cell Stem Cell, 2018, 23, 162-163.	5.2	1
88	TP73 As Novel Determinant of Resistance to BCL-2 Inhibition in Acute Myeloid Leukemia. Blood, 2019, 134, 1251-1251.	0.6	1
89	Ups and downs of CHIP. Blood, 2018, 131, 1773-1774.	0.6	0
90	Distinct Clinical Characteristics of Myelodysplastic Syndrome in Human Immunodeficiency Virus-Infected Patients,. Blood, 2011, 118, 3821-3821.	0.6	0

#	Article	IF	CITATIONS
91	Refined MD Anderson Prognostic Scoring System (MDAPS-R) for Chronic Myelomonocytic Leukemia (CMML). Blood, 2012, 120, 3797-3797.	0.6	0
92	Serum CCL3 and CCL4 Levels Function As Novel Prognostic Markers in Diffuse Large B Cell Lymphoma Blood, 2012, 120, 2709-2709.	0.6	0
93	Very High Rate of Leukemic Transformation and Poor Survival in Patients with Lower Risk Myelodysplastic Syndrome (MDS) Who Dynamically Acquire FLT3 Molecular Alteration (FLT3m): Study of 290 MDS Patients with Sequential Mutation Analysis. Blood, 2012, 120, 3802-3802.	0.6	0
94	Characteristics and Outcomes Of Patients (pts) With Multiple Myeloma (MM) Who Develop Therapy (t)-Related Myelodysplastic Syndrome (MDS), t-Chronic Myelomonocytic Leukemia (CMML), Or t-Acute Myeloid Leukemia (AML). Blood, 2013, 122, 1424-1424.	0.6	0
95	Fludarabine and Cytarabine Based Induction Therapy Is Associated With High Response Rate and Durable Remission With Low Treatment Related Mortality In Elderly Patients With Core-Binding Factor AML (CBF-AML). Blood, 2013, 122, 3945-3945.	0.6	0
96	Single-Cell Characterization of Acute Myeloid Leukemia (AML) and Its Microenvironment Identifies Signatures of Resistance to PD-1 Blockade Based Therapy. Blood, 2020, 136, 29-31.	0.6	0
97	Baseline Mutations Lack Impact on Clinical Outcomes and Molecular Response in Core Binding Factor Leukemia Treated with Highly Effective Regimen. Blood, 2020, 136, 36-37.	0.6	0
98	Immunologic Predictors for Clinical Responses in Patients with Myelodysplastic Syndromes Treated with Immune Checkpoint Blockade. Blood, 2020, 136, 4-4.	0.6	0
99	Distinct Prognostic Effects of TP53 Mutations in Newly Diagnosed Versus Relapsed/Refractory (R-R) Patients (pts) with B-Acute Lymphoblastic Leukemia (ALL) Treated with Mini-Hcvd-Inotuzumab Ozogamicin with or without Blinatumomab Regimens. Blood, 2020, 136, 41-43.	0.6	0
100	Impact of Cytogenetic Abnormalities (CA) on Outcome of Patients (Pts) with Relapsed/Refractory (R-R) Acute Lymphoblastic Leukemia (ALL) Treated with Inotuzumab Ozogamicin (INO) in Combination with Low-Intensity Chemotherapy (mini-hyper-CVD) with or without Blinatumomab: Results from a Phase 2 Study. Blood, 2020, 136, 45-47.	0.6	0
101	Untangling the Relationship Between Clonal Hematopoiesis and Ovarian Cancer Therapies. Journal of the National Cancer Institute, 2021, , .	3.0	O