
Honghwi Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6237043/publications.pdf Version: 2024-02-01

HONCHWI PARK

#	Article	IF	CITATIONS
1	Simultaneous Extraction of the Grain Size, Single-Crystalline Grain Sheet Resistance, and Grain Boundary Resistivity of Polycrystalline Monolayer Graphene. Nanomaterials, 2022, 12, 206.	4.1	2
2	Layer-resolved release of epitaxial layers in III-V heterostructure via a buffer-free mechanical separation technique. Science Advances, 2022, 8, eabl6406.	10.3	7
3	Effects of Thermally Induced Phase Transition on the Negative Thermo-Optic Properties of Atomic-Layer-Deposited TiO ₂ Films. ACS Applied Electronic Materials, 2022, 4, 651-662.	4.3	4
4	Factors Determining the Resistive Switching Behavior of Transparent InGaZnOâ€Based Memristors. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	10
5	Influence of Amorphous-to-Crystalline Transformation on the Negative Thermo-Optic Properties of TiO2 Films. ECS Transactions, 2021, 102, 151-158.	0.5	0
6	Influence of Amorphous-to-Crystalline Transformation on the Negative Thermo-Optic Properties of TiO2 Films. ECS Meeting Abstracts, 2021, MA2021-01, 1019-1019.	0.0	0
7	Evaluation of the average grain size of polycrystalline graphene using an electrical characterization method. Solid-State Electronics, 2021, 186, 108172.	1.4	1
8	High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnO <i>_x</i> and n-InGaZnO. ACS Applied Materials & Interfaces, 2021, 13, 55676-55686.	8.0	4
9	Analytic model of spalling technique for thickness-controlled separation of single-crystalline semiconductor layers. Solid-State Electronics, 2020, 163, 107660.	1.4	8
10	Investigation of electrical characteristics of flexible CMOS devices fabricated with thickness-controlled spalling process. Solid-State Electronics, 2020, 173, 107901.	1.4	5
11	Effect of Graphene Doping Level near the Metal Contact Region on Electrical and Photoresponse Characteristics of Graphene Photodetector. Sensors, 2020, 20, 4661.	3.8	3
12	Extraction of intrinsic field-effect mobility of graphene considering effects of gate-bias-induced contact modulation. Journal of Applied Physics, 2020, 127, .	2.5	5
13	Effect of copper surface morphology on grain size uniformity of graphene grown by chemical vapor deposition. Current Applied Physics, 2019, 19, 1414-1420.	2.4	7
14	Multifunctional graphene sensor for detection of environment signals using a decoupling technique. Solid-State Electronics, 2019, 151, 40-46.	1.4	8
15	Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Nanotechnology, 2018, 29, 415303.	2.6	41