
Joon Ho Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6236943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of bio-adsorptive removal performance of strontium through ureolysis-mediated bio-mineralization. Chemosphere, 2022, 288, 132586.	4.2	1
2	Exploration of effects of CO2 exposure on the NOx-removal performance of TiO2-incorporated Portland cement evaluated via microstructural and morphological investigation. Journal of Building Engineering, 2022, 45, 103609.	1.6	3
3	Effect of the molar ratio of calcium sulfate over ye'elimite on the reaction of CSA cement/slag blends under an accelerated carbonation condition. Journal of Building Engineering, 2022, 46, 103785.	1.6	2
4	Effects of exposure temperature on the piezoresistive sensing performances of MWCNT-embedded cementitious sensor. Journal of Building Engineering, 2022, 47, 103816.	1.6	14
5	Evaluation of physicochemical properties and environmental impact of environmentally amicable Portland cement/metakaolin bricks exposed to humid or CO2 curing condition. Journal of Building Engineering, 2022, 47, 103831.	1.6	5
6	Enhanced electrical heating capability of CNT-embedded cementitious composites exposed to water ingress with addition of silica aerogel. Ceramics International, 2022, 48, 13356-13365.	2.3	9
7	Improved electromagnetic interference shielding performances of carbon nanotube and carbonyl iron powder (CNT@CIP)-embedded polymeric composites. Journal of Materials Research and Technology, 2022, 18, 1256-1266.	2.6	20
8	Local Al network and material characterization of belite-calcium sulfoaluminate (CSA) cements. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	1.3	7
9	Modifications in hydration kinetics and characteristics of calcium aluminate cement upon blending with calcium sulfoaluminate cement. Construction and Building Materials, 2022, 342, 127958.	3.2	12
10	Hydration of calcium sulfoaluminate cement blended with blast-furnace slag. Construction and Building Materials, 2021, 268, 121214.	3.2	44
11	Effects of silica aerogel inclusion on the stability of heat generation and heat-dependent electrical characteristics of cementitious composites with CNT. Cement and Concrete Composites, 2021, 115, 103861.	4.6	26
12	A novel physicomechanical approach to dispersion of carbon nanotubes in polypropylene composites. Composite Structures, 2021, 258, 113377.	3.1	24
13	Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 2021, 274, 122094.	3.2	39
14	Experimental and theoretical studies of hydration of ultra-high performance concrete cured under various curing conditions. Construction and Building Materials, 2021, 278, 122352.	3.2	17
15	Carbonation of calcium sulfoaluminate cement blended with blast furnace slag. Cement and Concrete Composites, 2021, 118, 103918.	4.6	45
16	Microstructural evolution and carbonation behavior of lime-slag binary binders. Cement and Concrete Composites, 2021, 119, 104000.	4.6	21
17	Influence of Polyethylene Terephthalate Powder on Hydration of Portland Cement. Polymers, 2021, 13, 2551.	2.0	6
18	Improved electric heating characteristics of CNT-embedded polymeric composites with an addition of silica aerogel. Composites Science and Technology, 2021, 212, 108866.	3.8	25

JOON HO SEO

#	Article	IF	CITATIONS
19	Influence of water ingress on the electrical properties and electromechanical sensing capabilities of CNT/cement composites. Journal of Building Engineering, 2021, 42, 103065.	1.6	15
20	Artificial neural network approach for predicting tunneling-induced and frequency-dependent electrical impedances of conductive polymeric composites. Materials Letters, 2021, 302, 130420.	1.3	16
21	Internal carbonation of belite-rich Portland cement: An in-depth observation at the interaction of the belite phase with sodium bicarbonate. Journal of Building Engineering, 2021, 44, 102907.	1.6	2
22	Hydration properties of alkali-activated fly ash/slag binders modified by MgO with different reactivity. Journal of Building Engineering, 2021, 44, 103252.	1.6	14
23	Role of Al in the crystal growth of alkali-activated fly ash and slag under a hydrothermal condition. Construction and Building Materials, 2020, 239, 117842.	3.2	15
24	Structural evolution of binder gel in alkali-activated cements exposed to electrically accelerated leaching conditions. Journal of Hazardous Materials, 2020, 387, 121825.	6.5	14
25	Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement. Cement and Concrete Composites, 2020, 106, 103462.	4.6	33
26	Effects of biological admixtures on hydration and mechanical properties of Portland cement paste. Construction and Building Materials, 2020, 235, 117461.	3.2	19
27	CO2 Uptake and Physicochemical Properties of Carbonation-Cured Ternary Blend Portland Cement–Metakaolin–Limestone Pastes. Materials, 2020, 13, 4656.	1.3	19
28	Effect of carbonyl iron powder incorporation on the piezoresistive sensing characteristics of CNT-based polymeric sensor. Composite Structures, 2020, 244, 112260.	3.1	37
29	Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume. Construction and Building Materials, 2020, 249, 118691.	3.2	27
30	Characterization of blast furnace slag-blended Portland cement for immobilization of Co. Cement and Concrete Research, 2020, 134, 106089.	4.6	26
31	Hydration kinetics and products of MgO-activated blast furnace slag. Construction and Building Materials, 2020, 249, 118700.	3.2	46
32	Impact of Bio-Carrier Immobilized with Marine Bacteria on Self-Healing Performance of Cement-Based Materials. Materials, 2020, 13, 4164.	1.3	9
33	Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art. Composite Structures, 2019, 227, 111244.	3.1	95
34	Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement. Construction and Building Materials, 2019, 224, 40-47.	3.2	31
35	Effect of CaSO4 Incorporation on Pore Structure and Drying Shrinkage of Alkali-Activated Binders. Materials, 2019, 12, 1673.	1.3	14
36	Calcined Oyster Shell Powder as an Expansive Additive in Cement Mortar. Materials, 2019, 12, 1322.	1.3	51

JOON HO SEO

#	Article	IF	CITATIONS
37	Utilization of Calcium Carbide Residue Using Granulated Blast Furnace Slag. Materials, 2019, 12, 3511.	1.3	17
38	Enhancement of the modulus of compression of calcium silicate hydrates via covalent synthesis of CNT and silica fume. Construction and Building Materials, 2019, 198, 218-225.	3.2	12
39	Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium. Cement and Concrete Research, 2018, 109, 81-89.	4.6	49
40	Pull-off bond behavior of anchored random-chopped FRP composites bonded to concrete. Composite Structures, 2018, 185, 193-202.	3.1	7
41	Hydration kinetics of high-strength concrete with untreated coal bottom ash for internal curing. Cement and Concrete Composites, 2018, 91, 67-75.	4.6	51
42	Synergistic effects of carbon nanotubes and carbon fibers on heat generation and electrical characteristics of cementitious composites. Carbon, 2018, 134, 283-292.	5.4	46
43	Effect of nano-silica on hydration and conversion of calcium aluminate cement. Construction and Building Materials, 2018, 169, 819-825.	3.2	59
44	CO2 Uptake of Carbonation-Cured Cement Blended with Ground Volcanic Ash. Materials, 2018, 11, 2187.	1.3	23
45	Pressure-Induced Geopolymerization in Alkali-Activated Fly Ash. Sustainability, 2018, 10, 3538.	1.6	14
46	Effect of MgO on chloride penetration resistance of alkali-activated binder. Construction and Building Materials, 2018, 178, 584-592.	3.2	32
47	Fabrication and design of electromagnetic wave absorber composed of carbon nanotube-incorporated cement composites. Composite Structures, 2018, 206, 439-447.	3.1	42
48	Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Construction and Building Materials, 2018, 177, 428-435.	3.2	46
49	Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation. Construction and Building Materials, 2017, 156, 728-738.	3.2	39
50	Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing. Journal of CO2 Utilization, 2017, 21, 224-226.	3.3	47
51	Structural strengthening and damage behaviors of hybrid sprayed fiber-reinforced polymer composites containing carbon fiber cores. International Journal of Damage Mechanics, 2017, 26, 358-376.	2.4	17
52	Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. Journal of Hazardous Materials, 2016, 318, 339-346.	6.5	61
53	Synergistic effect of MWNT/fly ash incorporation on the EMI shielding/absorbing characteristics of cementitious materials. Construction and Building Materials, 2016, 115, 651-661.	3.2	50
54	Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials. Construction and Building Materials, 2016, 127, 762-773.	3.2	209

Joon Ho Seo

#	Article	IF	CITATIONS
55	Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures. Cement and Concrete Research, 2016, 89, 72-79.	4.6	155
56	Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cement and Concrete Research, 2016, 82, 50-57.	4.6	220
57	Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration. Materials and Design, 2016, 93, 160-167.	3.3	52
58	Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Composite Structures, 2016, 136, 162-170.	3.1	110
59	Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites. Smart Structures and Systems, 2016, 18, 217-231.	1.9	44
60	The influence of sodium hydrogen carbonate on the hydration of cement. Construction and Building Materials, 2015, 94, 746-749.	3.2	33
61	Reactivity and reaction products of alkali-activated, fly ash/slag paste. Construction and Building Materials, 2015, 81, 303-312.	3.2	192
62	Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures, 2014, 107, 60-69.	3.1	280
63	Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cement and Concrete Composites, 2014, 53, 239-248.	4.6	309
64	Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 2013, 38, 1073-1082.	3.2	120
65	Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cement and Concrete	4.6	206